# UltraSIL<sup>™</sup> Polymer-Housed VariSTAR<sup>™</sup> Type UHS Class DH Distribution-Class Surge Arresters Certified Test Report



# UltraSIL<sup>™</sup> Polymer-Housed VariSTAR<sup>™</sup> Type UHS Class DH Distribution-Class Surge Arresters

# CERTIFICATION

Statements made and data shown are, to the best of our knowledge and belief, correct and within the usual limits of commercial testing practice.

Michael 201. Ramay

Manager of Product Engineering - Arresters

# INTRODUCTION

This test report certifies that the UltraSIL VariSTAR arresters UHS Class Distribution – DH were successfully tested to IEC 60099-4 <sup>™</sup>:2014 "Metal-Oxide surge arresters without gaps for a.c. systems".

# TEST PROGRAM

## **OBJECTIVE**

To demonstrate that the UltraSIL VariSTAR Arresters Class Distribution - DH meet all performance requirements.

#### PROCEDURE

The following design tests were performed on a sufficient number of samples to demonstrate all performance requirements are met.

# **TYPE TESTS**

|    | Test Description                                                      | Per IEC60099-4:2014 section |
|----|-----------------------------------------------------------------------|-----------------------------|
| Α. | Insulation Withstand test                                             | 10.8.2                      |
| В. | Residual Voltage test                                                 | 10.8.3                      |
| C. | Test to verify long term stability under continuous operating voltage | 10.8.4                      |
| D. | Repetitive charge transfer withstand                                  | 10.8.5                      |
| E. | Heat dissipation behavior of test sample                              | 10.8.6                      |
| F. | Operating duty test                                                   | 10.8.7                      |
| G. | Power-frequency voltage versus time test                              | 10.8.8                      |
| Η. | Arrester Disconnector                                                 | 10.8.10 9                   |
| Ι. | Short-circuit Test (Design B)                                         | 10.8.10                     |
| J. | Test of the bending moment                                            | 10.8.11                     |
| K. | Weather ageing test                                                   | 10.8.17                     |
|    |                                                                       |                             |

# <u>RESULTS</u>

The UltraSIL VariSTAR arresters met all performance requirements of IEC 60099-4:2014.

Page: 4 of 13

# TEST A: INSULATION WITHSTAND

| Test Report Number:    | B8000322 |
|------------------------|----------|
| Certifying Laboratory: | CESI     |

Objective: To demonstrate the voltage withstand capability of the external insulation of the arrester housing.

#### Lightning Impulse Voltage Test

Procedure: The sample was clean and dry. The applied voltage was 1.3 times the maximum residual voltage at the nominal discharge current. The sample was subject to fifteen positive and negative 1.2 X 50 µs impulses.

Results: The sample passed with less than two discharges at the positive and negative voltage values. No internal discharges occurred.

#### Power Frequency Voltage Test

Procedure: The sample was clean and tested under wet conditions. The sample was subject to a power frequency voltage with a peak value of 0.88 times the lightning impulse protection level for a period of one minute.

Results: The sample passed with no discharges during the one-minute period.

#### TEST B: RESIDUAL VOLTAGE TESTS

| Test Report Number:    | B87021541 |
|------------------------|-----------|
| Certifying Laboratory: | CESI      |

Objective: To determine the maximum discharge voltage for each discharge current.

Lightning Impulse Residual Voltage Test

Procedure: A lightning current impulse was applied to each sample for approximately 0.5, 1, and 2 times the nominal discharge current. The current impulse had a front time between 7µs to 9µs and the virtual time to half-value on the tail was between 18µs to 22µs.

#### Steep Current Impulse Residual Voltage Test

Procedure: One steep current impulse was applied to each sample with a peak value equal to the nominal discharge current of the arrester. The current impulse had a front time between 0.9µs to 1.1µs and the virtual time to half-value on the tail was not longer than 20µs.

Page: 5 of 13

# CT235006EN

| UltraSil HD Star |      | 1/2 Wave   | 8/20 Wave Forms |            |            |            |            | 30/60 Switching Surge |            |            |
|------------------|------|------------|-----------------|------------|------------|------------|------------|-----------------------|------------|------------|
| Rating           | MCOV | (kV, peak) | (kV, peak)      | (kV, peak) | (kV, peak) | (kV, peak) | (kV, peak) | (kV, peak)            | (kV, peak) | (kV, peak) |
|                  |      | 10 kA      | 1.5 kA          | 3 kA       | 5 kA       | 10 kA      | 20 kA      | 40 kA                 | 125 A      | 500 A      |
| 3                | 2.55 | 10.8       | 8.2             | 8.7        | 9.1        | 9.9        | 10.9       | 12.3                  | 7.1        | 7.6        |
| 6                | 5.1  | 21.5       | 16.3            | 17.4       | 18.2       | 19.8       | 21.9       | 24.7                  | 14.1       | 15.1       |
| 9                | 7.65 | 32.4       | 24.6            | 26.1       | 27.3       | 29.8       | 33.0       | 37.1                  | 21.3       | 22.7       |
| 10               | 8.4  | 34.4       | 26.0            | 27.7       | 29.0       | 31.6       | 34.9       | 39.4                  | 22.6       | 24.1       |
| 12               | 10.2 | 43.2       | 32.7            | 34.8       | 36.4       | 39.7       | 43.9       | 49.5                  | 28.3       | 30.3       |
| 15               | 12.7 | 52.2       | 39.6            | 42.1       | 44.0       | 48.0       | 53.1       | 59.8                  | 34.3       | 36.6       |
| 18               | 15.3 | 64.8       | 49.1            | 52.3       | 54.7       | 59.6       | 65.9       | 74.2                  | 42.6       | 45.5       |
| 21               | 17   | 68.8       | 52.1            | 55.4       | 58.0       | 63.2       | 69.9       | 78.7                  | 45.1       | 48.2       |
| 24               | 19.5 | 79.5       | 60.2            | 64.1       | 67.0       | 73.1       | 80.8       | 91.1                  | 52.2       | 55.8       |
| 27               | 22   | 92.4       | 70.0            | 74.5       | 77.9       | 84.9       | 93.9       | 106                   | 60.6       | 64.8       |
| 30               | 24.4 | 100.5      | 76.1            | 81.0       | 84.7       | 92.4       | 102        | 115                   | 66.0       | 70.5       |
| 33               | 27   | 114.2      | 86.5            | 92.1       | 96.3       | 105        | 116        | 131                   | 75.0       | 80.1       |
| 36               | 29   | 120.8      | 91.5            | 97.3       | 102        | 111        | 123        | 138                   | 79.3       | 84.7       |

# Table 1: Maximum Residual Voltage Characteristics

#### **TEST C:**

# Test to Verify Long Term Stability under Continuous Voltage

| Test Report Number:    | B87020999 |
|------------------------|-----------|
| Certifying Laboratory: | CESI      |

- Objective: To demonstrate the ability of the metal-oxide resistors to remain thermally stable (decreasing power loss) throughout the expected lifetime of the arrester in the surrounding medium applicable for the design
- Procedure: The sample were heated in an oven to 115°C and energized to a corrected voltage U<sub>c</sub>' and further corrected by unbalancing factor due to voltage distribution for a duration of 1000 hours.
- Results: During the aging test, all measurements of power loss including final measurements were not greater than 1.1 x the starting power loss and have satisfied the acceptance criteria showing a decreasing trend

Page: 6 of 13

# TEST D: Repetitive Charge Transfer Withstand

| Test Report Number:    | B87022894 |
|------------------------|-----------|
| Certifying Laboratory: | CESI      |

### Objective: To demonstrate the ability of the arrester to transfer charge

- Procedure: The 10 samples were subject to twenty lightning impulses 8/20 with an amplitude resulting in a current density of 0.5kA/cm<sup>2</sup>, divided into ten groups of two operations, with approximately 60 seconds between impulses. The samples cooled to ambient temperature between impulses.
- Results: The samples met test requirements with less than 5% change in residual voltage and 5% change in reference voltage and no mechanical damage after the final application of a current impulse of 8/20 as revealed by visual inspection.

## TEST E: Heat Dissipation Behavior Verification of Test Sample

| Test Report Number:    | B87021751 |
|------------------------|-----------|
| Certifying Laboratory: | CESI      |

- Objective: To demonstrate the thermal equivalent section cools equal to or slower than the complete arrester
- Procedure: The complete arrester equipped with fiber optic temperature probes was placed in the testing laboratory at still ambient air of 19.5°C and was heated to a temperature of approximately 140°C by applying a power frequency over-voltage above the reference voltage. After the goal temperature of 140°C was reached, the source was disconnected and the cooling curve was monitored for more than two hours. The thermal equivalent section was then placed in was placed in the testing laboratory at still ambient air of 20.2°C and was heated to a temperature of approximately 140°C (corrected for differences in ambient temperature) by applying a power frequency over-voltage above the reference voltage. After the goal temperature of 140°C was reached, the source was disconnected and the cooling curve was monitored for more than two hours
- Results: The thermal equivalent section met the goal by cooling slower than the complete arrester throughout the cool curve time range of more than two hours.

Page: 7 of 13

# TEST F: OPERATING DUTY TEST

| Test Report Number:    | B7021795 |
|------------------------|----------|
| Certifying Laboratory: | CESI     |

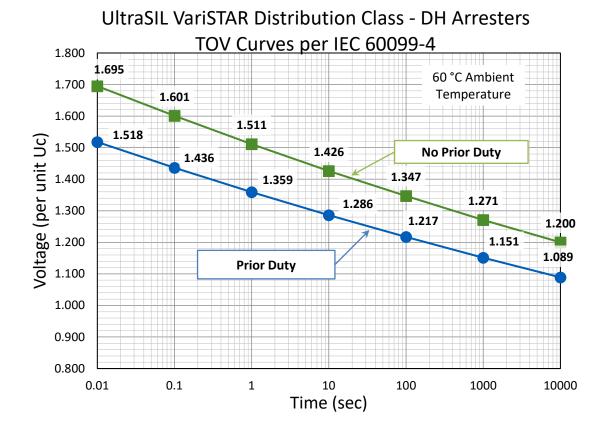
Objective: To demonstrate the ability to recover after transfer of the thermal charge Qth

- Procedure: After application of a high current impulse 4/10  $\mu$ s at 100kA. The thermal equivalent section was then heated in an oven at the temperature of 61°C till thermal equilibrium was reached. The section was then injected with two lightning current impulses 8/20  $\mu$ s at the thermal charge transfer of Q<sub>th</sub> of 0.55 C per impulse. Within 100ms of the second impulse, the sample shall be energized at U<sub>R</sub>' for 10 s and U<sub>C</sub>' for 30 minutes.
- Results: The samples met test requirements with less than 5% change in residual voltage, no sign of breakdown as verified by the oscillograms, achieving thermal stability. After the samples had cooled to ambient temperature, two current impulses 8/20 µs one-minute apart at the nominal discharge current have been applied to check the integrity of the internal parts.

Page: 8 of 13

# TEST G: POWER FREQUENCY VOLTAGE VS. TIME

| Test Report Number:    | B7022031 |
|------------------------|----------|
| Certifying Laboratory: | CESI     |


Objective: To determine the over voltage values and time durations for the arrester design.

Procedure: Two samples were tested with no prior duty. Four samples were tested with prior duty. The samples were heated in an oven to 60 °C until thermal equilibrium was reached. The two samples with no prior duty were tested at: 1.211 x U<sub>r</sub>' for 10 sec and 1.059 x U<sub>r</sub>' for 1000 sec The recovery voltage of U<sub>C</sub>' was applied to the sample for thirty minutes.

The four samples were subject to two lightning current impulses 8/20 at the rated thermal charge transfer  $Q_{th}$  of 1.1 C then tested at:

1.133 x Ur' for 1 sec 1.072 x Ur' for 10 sec 1.014 x Ur' for 100 sec 0.959 x Ur' for 1000 sec The recovery voltage of  $U_c$ ' was applied to the sample for thirty minutes.

Results: The variation of lightning impulse residual voltage before and after the test was less than 5% The thermal stability was achieved.



Page: 9 of 13

# **TEST H: Arrester Disconnector**

| Test Report Number:    | A4-000660 |
|------------------------|-----------|
| Certifying Laboratory: | CESI      |

# Objective: To verify the disconnector was effective and permanently disconnected from arrester.

Procedure: Five disconnectors were tested without the surge arrester at 20A, 200A, and 800 A. The applied voltage was approximately 2700 V.

Results: In each test, the samples disconnected and the separation was permanent.

# 

# **Isolator Disconnect Curve**

Page: 10 of 13

#### TEST I: SHORT- CIRCUIT TEST

| Test Report Number:    | B7001288 |
|------------------------|----------|
| Certifying Laboratory: | CESI     |

Objective: To verify arrester internal fault is not likely to create an explosive event.

- Procedure:Samples were thermally pre-killed using an over voltage applied for 5+3 minutes. The<br/>four 60kV arresters were tested at a reduced voltage.<br/>-High current short-circuit test with 20.6 kA for 0.21 sec.<br/>-High current short-circuit test with 12.4 kA for 0.21 sec.<br/>-High current short-circuit test with 6.25 kA for 0.21 sec.<br/>-Low Current short-circuit test with 630 A for 1.02 sec.
- Results: The 60kV arresters tested at reduced voltage met high current test requirements of 20kA. The 60kV arresters tested at reduced voltage met low current test requirements of 600A. The 60kV arresters tested at reduced voltage met all test requirements

#### **TEST J: Bending Moment**

| Test Report Number:    | B7021096 |
|------------------------|----------|
| Certifying Laboratory: | CESI     |

- Objective: This test demonstrates the ability of the arrester to withstand the declared values for bending loads. Specified long-term load (SLL) and Specified short-term load (SSL) for UHS Distribution Class DH.
- Procedure: a) All three samples were subjected to 1000 cycles of bending moment, each cycle comprising loading from zero to SLL of 180 Nm in one direction, followed by loading to SLL in the opposite direction, then returning to zero load. The cyclic motion shall be approximately sinusoidal form at 0.1 Hz.

b) Two of the samples from procedure a) were subjected to a bending moment test. The bending load was increased smoothly to SSL of 225 Nm over 60 s. During this time the deflection was measured, then the load was released smoothly. The maximum deflection was recorded 10 min after the release of the load. The third sample from procedure a) was subjected to a terminal torque. A terminal torque of 27Nm was applied for 30 sec. This sample was then subjected to four 24 hours thermal cycles of heating and cooling as shown in fig. 11 of the reference standard while mechanically stressed at the specified load of 180Nm. The load direction was changed every 24 hours according to fig. 12 of the reference standard

c) Subject all three samples to water immersion test. The samples were kept for 52 hours at 80°C in a deionized water with 1kg/m3 of NaCl.

At the end of the boiling, the sample remained in the vessel until the water cooled to 50 °C. The sample underwent pre and post testing consisting of power loss, partial discharge and residual voltage.

Results: The sample showed no physical damage, the power loss did not increase by more than 20% of the initial measurement, the partial discharge did not exceed 10 pC at 1.05\*U<sub>c</sub>, and the residual voltage at the same discharge current did not deviate by more than 5%. The change in reference voltage was less 2%.

Page: 11 of 13

# TEST K: WEATHER AGING TESTS

#### TEST SERIES A: 1000 HR

| Test Report Number:    | T04-1374 |
|------------------------|----------|
| Certifying Laboratory: | STRI     |

- Objective: To verify the ability of the arrester to withstand continuous salt fog conditions and endure surface arcing and heating.
- Procedure: The samples were placed in an enclosure filled with a salt fog mist. The samples were energized at U<sub>C</sub> for a period of 1000 hours. The samples underwent pre and post testing consisting of partial discharge and reference voltage.
- Results: All samples met the test requirements of no housing punctures or housing erosion, no internal breakdowns, no surface tracking was evidenced by physical examination, the arrester reference voltage did not decrease by more than 5%, and the partial discharge level did not exceed 10 pC.

#### TEST UV LIGHT

| Test Report Nu<br>Certifying Labo |                                                                                                                                                  | B803644<br>CESI |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| Objective:                        | To verify the material of the polymer housing is stable under UV Light                                                                           |                 |  |
| Procedure:                        | Three samples of housing material 150 x 100 mm were subjected to 1000 hours of UV Light.                                                         |                 |  |
| Results:                          | All samples met the test requirements of no cracks or raised surfaces. The surface roughness was measured and met the requirement of $< 0.1$ mm. |                 |  |

Page: 12 of 13

This page intentionally left blank

Page: 13 of 13

| REVISION TABLE |           |                        |  |
|----------------|-----------|------------------------|--|
| REVISION       | DATE      | WHAT WAS ADDED/CHANGED |  |
| NO.            | 0.4/00.00 |                        |  |
| 0              | 04/2022   | New Report             |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |
|                |           |                        |  |

Eaton 1000 Eaton Boulevard Cleveland, OH 44122 United States Eaton.com

Eaton's Power Systems Division 2300 Badger Drive Waukesha, WI 53188 United States Cooperpower.com

© 2022 Eaton All Rights Reserved Publication No. CT235006EN April 2022 Eaton is a are registered trademarks of Eaton. All other trademarks are property of their respective owners.

