Type F; Three-Phase; Vacuum Load Break Switch Maintenance Instructions

Figure 1.
Type F vacuum load break switch.

CONTENTS

Introduction 1
Description 2
F Switch 2
F Switch Control 2
Duty Cycle 2
Testing 2
Maintenance 2
Frequency of Maintenance 2
Periodic Maintenance Inspection 2
Oil Condition 3
Insulation Level Withstand Tests 3
Shop Maintenance Procedures 3
Bushings 3
15 Kv Bushings 3
27/38 Kv Bushings 4
Switch Operation 5
Service Parts List 9
Type F Switch Control Parts 9
Bushing Parts (Figure 9) 11
Tank and Frame Assembly (Figure 10) 13
Head Assembly (Figure 11) 15
Mechanism Assembly, View 1 (Figure 12) 17
Mechanism Assembly, View 2 (Figure 13) 19

INTRODUCTION

Service Information S260-50-2 provides maintenance instructions for Type F three-phase, vacuum load break switches. Included is a general description of the switch and control, and their operation. A service parts list, keyed to exploded-view drawings of the switch is included at the back of the manual.

[^0]
DESCRIPTION

The Type F switch operates on distribution systems through 38 kV with continuous loads up to 600 amps . Oil-insulated vacuum interrupters provide minimum size and maintenance, making it ideally suited for pole-mounted applications. An integral storedenergy operator allows the switch to operate even if power is lost, and a fault-sensing and indicating accessory can provide indication of faults to the supervisory control.

Then when commanded, the interrupter contacts can be remote-electrically tripped or closed. Since all moving parts are completely enclosed, installation location and switch application is seldom a problem.

A complete F switch package consists of the switch which interrupts the circuit, a switch control which provides on-siteground level and remote operation of the switch and indication of faults to the supervisory control (when equipped with the fault indicating accessory), and an interconnecting control cable set.

F Switch

The Type F load break switch stored-energy operator provides switching response when commanded even if operating power to the switch is lost. Energy for multiple opening/closing operations is stored in a spring mechanism, permitting a number of switching operations before recharging is needed. This feature enhances switch application on systems employing supervisory controls, on systems using remote switching, or on systems where source position may reverse. Operations available after loss of motor power are O-C-O-C-O (starting in closed position) and C-O-C-O (starting in open position).

The release of the charged opening/closing spring provides the force required to open or close the three sets of vacuum interrupter contacts. A motor-operated mechanism-powered from an external 120-Vac supply-recharges the spring immediately after an opening or closing action. If power to the motor is lost, recharging can be done manually by using the pullring on the underside of the switch housing or by waiting until power is restored. The switch cabinet-housing the operator springs, spring charging motor, auxiliary switch, etc.-is protected against temperature and humidity by a 30 watt heater.

Interruption takes place within vacuum interrupters. The horizontal mounting configuration of the vacuum interrupters within the F switch tank also provides a compact package that is easily handled and installed.

The Type F switch can be operated from the bottom of the switch housing. A pullring to charge the operating spring, a pullring to open/close the vacuum contacts (with indicator flags indicating if contacts are OPEN or CLOSED), and a disabling handle that locks the interrupter contacts in the open position are provided. These controls can be operated by hand or hookstick to manually initiate an operating sequence.

F Switch Control

The cable-connected Type F switch control provides on-siteground level and remote operation (with or without the faultindicator accessory). This control is mounted in a cabinet and provides commands to the switch to electrically open or close the interrupter contacts. A sealed, nickel-cadmium 24 -volt battery supplies the power to the F switch trip/close coil-releasing the charged springs which open/close the interrupter contacts. A 120-Vac potential charger built into the control circuitry provides a constant trickle charge to the battery. In addition, a standard 25 -watt thermostatically controlled heater provides thermal protection and humidity control (turning on at temperatures below $85^{\circ} \mathrm{F}$ and turning off at temperatures above $100^{\circ} \mathrm{F}$). The heater is energized from the 120 -Vac auxiliary power input. Indicator lights are provided to check contact position. For safety, the remote control ON-OFF switch can block automated-supervisory control commands.

In addition, terminals are provided for battery testing. For remote contact indication, a two-stage auxiliary switch (two A and two B contacts) is provided. Customer connections are made to the auxiliary switch contact terminals in the switch control which is cable-connected to the Type F switch.

DUTY CYCLE

Electrical	2500 Operations at 600 Amps
Mechanical	2500 Operations

TESTING

Procedures for testing the Type F switch are included in the Installation Manual S280-50-1.

MAINTENANCE

Frequency of Maintenance

Because switches are applied under widely varying operating and climatic conditions, maintenance intervals are best determined by the user based on actual operating experience. To assure proper operation, switches must be maintained when they have operated the equivalent of a complete duty cycle and before the dielectric strength has deteriorated below prescribed levels. In the absence of specific operating experience, the following procedures are recommended.

- When Type F switches are operated under usual service conditions as defined in ANSI (American National Standards Institute) C37.60, "Standard Requirements for Automatic Circuit Reclosers for Alternating Current Systems," it is recommended that the following maintenance procedures be performed at the completion of an equivalent duty cycle.
- However, if the switch has not completed an equivalent duty cycle within three years, it is recommended that an external inspection, oil-level check, and a check of the dielectric strength of the oil be made at that time. (See steps 1, 2, and 8 of "Maintenance Procedure" below.)

The bellows used on interrupter moving contact rods have a mechanical life expectancy of 7000 operations. Interrupters must be replaced when 7000 operations have been accumulated.

CAUTION

After 7000 operations bellows may develop leaks due to mechanical wear. If a leak develops the interrupter may be unable to clear load current.

Periodic Maintenance Inspection

Each periodic maintenance inspection done at the completion of an equivalent duty cycle, should include:

1. Bypass and remove the switch from service.
2. Inspect external components.
A. Check for broken or cracked bushings. Replace as necessary.
B. Check for scratched paint, repaint as needed.
C. Note counter reading and enter in the record log.
3. Perform an insulation level withstand test (see page 3 for procedure).
4. Raise head mechanism assembly from tank to expose internal components.
5. Clean all internal components.

CAUTION

Never use volatile solutions, detergents, or water-soluble cleaners.

S260-50-2

6. Check the contact erosion of the vacuum interrupters.
A. Locate the scribe mark on the moving contact rod.
B. If the scribe falls below the edge of the phenolic guide when the interrupter is closed, the interrupter has reached the end of its useful life and must be replaced.
7. Check circuit components attached to the switch head, frame and operating mechanism.
A. Check condition of wiring to terminal strips and make sure all connections are tight.
B. Check condition of all microswitches and trip solenoid.
C. Check condition of the bushing current transformers and the associated wiring.
D. Check the control cable receptacles.
8. Check the dielectric strength of the insulating oil.
A. An oil sample taken near the bottom of the tank should have a dielectric strength of not less than 22 kv rms.
B. Low dielectric strength indicates the presence of water or other pollutants. Replace oil as necessary.
9. If oil must be replaced:
A. Drain the tank and clean.
B. Fill with new, clean, insulating oil up to the oil level mark on tank. Tank capacity is approximately 35 U.S. gallons. See Oil Condition section below.
10. Replace head gasket.
11. Clean the head gasket seat and retank the switch. Replace the head bolts and tighten to 35-55 ft-lbs. torque. Apply clamping force gradually and equally, in rotation, to each bolt to achieve an evenly distributed gasket sealing pressure.
12. Check the oil level with the dipstick in the head and adjust level to the upper line on dipstick.
13. Repeat the high voltage dielectric withstand test (Step 3) to make sure the dielectric clearances within the tank have not been compromised.

Oil Condition

Oil provides the internal insulation barrier between phases and from phase to ground, and must be replaced before it deteriorates below a safe dielectric level. Replace the oil if its dielectric strength falls below 22 kv .

New oil should always be filtered before use even though it is obtained from an approved source. Passing the oil through a blotter press will remove free water and solid contaminants such as rust, dirt, and lint. Keep aeration to a minimum during filtering to prevent moisture in the air from condensing in the oil and lowering its dielectric strength.
Used oil must be treated before reusing. Filtering may remove absorbed and free water and other contaminants to raise the dielectric strength to acceptable levels. However, filtering does not always remove water-absorbing contaminants and the dielectric strength may fall rapidly after being returned to service. Therefore the switch should be filled with new oil, or oil that has been restored to like-new condition. Oil used in switches conforms to ASTM Standard D3487, Type I; its property limits are shown in Reference Data R280-90-1, "Oil Specifications and Tests."

Insulation Level Withstand Tests

High-potential withstand tests provide information on the dielectric condition of the switch. Testing is performed at 75% of the rated low-frequency withstand voltage.

Switch Type	BIL (Kv)	Test Voltage (Kv)
15 Kv	110	37.5
27 Kv	125	45
29 Kv	125	45
38 Kv	150	52.5

TEST 1: Proceed as follows:

1. Manually close switch.
2. Ground tank and head.
3. Connect all three source-side bushings $(1,3,5)$ together.
4. Apply proper test voltage to source-side bushings.
5. The switch should withstand the test voltage for 60 seconds.

TEST 2: Proceed as follows:

1. Manually close switch.
2. Ground tank and head.
3. Ground Phase A (bushing 2) and Phase C (bushing 6).
4. Apply proper test voltage to Phase B (bushing 3).
5. The switch should withstand the test voltage for 60 seconds.

TEST 3: Proceed as follows:

1. Manually open switch.
2. Ground tank and head.
3. Connect and ground all three load-side bushings (2, 4, 6).
4. Connect all three source-side bushings $(1,3,5)$.
5. Apply proper test voltage to source-side bushings.
6. The switch should withstand the test voltage for 60 seconds.
7. Reverse the connections: ground source-side bushings (1, $3,5)$; apply test voltage to load-side bushings $(2,4,6)$ for 60 seconds.
8. The switch should withstand the test voltage for $60 \mathrm{sec}-$ onds. TEST RESULTS: These high potential withstand tests provide information on the dielectric condition of the switch and the integrity of the interrupters.
A. If the switch passes the closed-contacts test (Tests 1 and 2) but fails the open-contacts test (Test 3) a deterioration of one or more of the interrupters is likely to be the cause. Check each interrupter individually to determine the failed phase or phases, and replace the interrupter(s). Retest to confirm the repair.
B. If the switch fails the closed-contacts tests (Test 1 and 2) the cause is likely to be a diminished electrical clearances, low oil dielectric strength or failed insulation. After correcting the problem, retest to confirm the repair.

SHOP MAINTENANCE PROCEDURES

Bushings

Bushing maintenance generally consists of a thorough cleaning and a careful examination for chips, cracks, or other mechanical damage during the periodic maintenance inspection. Bushings must be replaced whenever damage is discovered.

15 Kv BUSHINGS

A damaged bushing can be replaced with the switch either tanked or untanked, depending upon the circumstance of the damage.

If the bushing porcelain is damaged during handling or installation of a switch, and it is obvious that no other damage was done, the damaged porcelain can be replaced without untanking the unit.

If a bushing was damaged while the switch was in service or storage, the switch must be untanked and inspected to ensure that no water or other contamination has entered the tank. The dielectric strength of the oil must be checked. And the bushing lead must be checked for damage (either mechanical or electrical flashover).

REPLACING THE BUSHING PORCELAIN WITH THE SWITCH TANKED

Refer to Figure 2 and proceed as follows:

1. Unscrew the bushing terminal and discard gasket.
2. Remove three hex head capscrews and clamps. Carefully lift out old porcelain.
3. Remove and discard lower gasket.
4. Twist off the split aluminum clamping ring from the old porcelain. If it is in good condition, it can be reused on the new porcelain; replace if damaged.
NOTE: The clamping ring cushions and distributes the pressure between the porcelain and the clamps. DO NOT OMIT.

Figure 2.
Removing bushing.
5. Using a new lower gasket, install new porcelain over the bushing rod and into head. Make sure roll pin on end of rod is seated into locking groove at top of porcelain.
6. Position clamping ring with split centered between two clamping screws.
7. Position clamps around bushing; apply anti-seize to threads of capscrews and loosely install. Tighten capscrews evenly, a little at a time, to $10-15 \mathrm{ft}$-lbs. torque.
NOTE: Clamping force must be applied gradually and equally in rotation to each screw. This provides an evenly distributed gasket sealing pressure.
8. Install a new terminal gasket. Apply a very small amount of petroleum jelly to the knurled surface on the inside face of the terminal. Thread terminal onto bushing rod and tighten to 35 ft -lbs. torque.

REPLACING THE BUSHING WITH THE

SWITCH UNTANKED

Refer to Figure 3 and proceed as follows:

1. Disconnect bushing lead from bushing rod.
2. Remove three hex head capscrews and clamps. Carefully lift out bushing assembly.
3. Remove and discard lower gasket.
4. The bushing can be replaced as an assembly or a new porcelain only can be installed, depending upon the extent of damage. If a new porcelain is to be installed, proceed as follows:
A. Unscrew bushing terminal and discard gasket. Withdraw rod from the bottom of the porcelain.
B. Insert rod assembly up through the new porcelain, make sure roll pin is seated in locking groove at top of porcelain.
C. Install a new terminal gasket. Apply a very small amount of petroleum jelly to the knurled surface on the inside face of the terminal. Thread terminal onto bushing rod and tighten to $35 \mathrm{ft}-\mathrm{lbs}$. torque.

Figure 3.

Bushing parts.

4. Twist the split aluminum clamping ring off the old porcelain, if it is in good condition.
5. Install the used, or new, clamping ring onto new bushing assembly.
NOTE: The clamping ring cushions and distributes the pressure between the porcelain and the clamps. DO NOT OMIT.
6. Install the new or reworked bushing assembly, with a new lower gasket, into the head. Position bushing so stud end of terminal is pointing outward.
7. Position clamping ring with split centered between two clamping screws.
8. Position clamps around bushing, apply anti-seize to threads of capscrews and loosely install. Tighten capscrews evenly, a little at a time, to $10-15 \mathrm{ft}$-lbs. torque.
NOTE: Clamping force must be applied gradually and equally in rotation to each screw. This provides an evenly distributed gasket sealing pressure.
9. Reconnect lead to bushing rod.

27/38 Kv BUSHINGS

The 27/38 Kv bushings are oil-filled. Special fixtures and procedures are required to assemble these bushings making field repair beyond the scope of normal shop maintenance. If these bushings are damaged, they must be replaced as a complete unit. Refer to Figure 4 and proceed as follows:

1. Disconnect the bushing lead from the bushing rod.
2. Remove three hex head capscrews and clamps. Carefully lift out bushing assembly.
3. Remove and discard lower gasket.
4. Twist the split aluminum clamping ring off the old bushing assembly, if it is good condition.
5. Install the used, or new, clamping ring onto new bushing assembly.
NOTE: The clamping ring cushions and distributes the pressure between the porcelain and the clamps. DO NOT OMIT.

Figure 4.
Removing bushing.
6. Install new bushing assembly, with a new lower gasket, into the head. Position bushing so stud end of terminal is pointing outward.
7. Position clamping ring with split centered between two clamping bolts.
8. Position clamps around bushing, apply anti-seize to threads of capscrews and loosely install. Tighten capscrews evenly, a little at a time, to $10-15 \mathrm{ft}$-lbs. torque.
NOTE: Clamping force must be applied gradually and equally in rotation to each screw. This provides an evenly distributed gasket sealing pressure.
9. Reconnect lead to bushing rod.

SWITCH OPERATION

Since the F switch is designed with an integral stored-energy operator, the switch can operate up to five times while 120 Vac power is lost. Operations available after loss of power are $\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{O}$ (starting in closed position) and C-O-C-O (starting in open position). But even when the stored-energy operator is discharged, all switch operations can be manually controlledby hand or hookstick-from the bottom of the switch housing (see Figure 5).

The Pull To Charge Spring Pullring allows the integral stored-energy operator to be manually charged. Simply continue pulling down (approximately 32 times if spring is fully discharged) on this pullring until it disengages-indicating a fully charged stored energy operator.

The Pull To Operate Pullring allows the switch to be opened or closed manually. If the interrupter contacts are closed, simply pulling down on this pullring will open the switch. If the interrupter contacts are open, pulling down on the pullring will close the switch.

The Switch Position Indicator Window displays the position of the switch's interrupter contacts-open or closed. This indicator displays the correct switch contact position, whether the operation is commanded from the switch, the control, or the supervisory control.

The To Disable Closing Lever prevents the switch from being closed during service or testing. The lever is kept in the "NORMAL" position for general switch operation. To prevent switch closing, simply rotate the lever 180° to the "DISABLE" position. The lever can be padlocked in this position.

The Operation Counter records the total number of times the switch opened. This provides an accurate record of switch operation.

Figure 5.
Type F switch operation.

Figure 6.
Type F switch interconnection diagram.

Figure 7.
Type F switch control interconnection system.

Figure 8.
Type F switch schematic diagram.

SERVICE PARTS LIST

The service parts and hardware listed and illustrated include only those parts and assemblies usually furnished for repair or involved in the maintenance procedures described in this manual. Further breakdown of listed asemblies is not recommended.

Dimensions of all common hardware parts have been carefully checked so that they may be locally acquired. The suffix letter of the 14 character catalog number for common hardware parts codes the plating of the part:

A - No plating; raw material
H-Silver
M - Black oxide
Q-Cadmium + zinc + chromate
Y - Zinc + chromate
Z - Electro zinc + bronze irridite

Type F Switch Control Parts

Catalog No.	Description
KA175FS	Varistor assembly
KA544ME1	Heater assembly
KP2155A1	Relay socket
KA83GV	Battery charger assembly
KP1100ME	Fuse block single section
KP1110ME	Fuse block end closure unit
KA460ME	24V battery (Gould)
KP2075A13	15 Amp fuse, Ban fibre tube
KP2075A12	3 Amp fuse, Ban fibre tube
KP2153A1	Relay, open relay and close relay
KP2156A1	Relay and socket bail
KP191FS	Receptacle, (R2)
KP192FS	Receptacle, (R1)
KP92GV	Battery connector
KA1139ME	Selector switch assembly, (CS)
KP2069A8	Pointer knob
K999904310308A	Pilot lamp, red, (L1)
K999904310309A	Pilot lamp, green, (L2)
K999904310310A	Light bulb, for use in (L1) and (L2)
KP2124A7	Toggle switch, (S2)
KP2124A10	Toggle switch, (S1)
K999904310246A	5 Amp thermal circuit breaker
KA894ME	Link assembly, used with battery test terminal
KP2081A2	Terminal, black, dual
KP2081A3	Terminal, red, single
KA145GV	Battery test circuit board assembly

A hardware kit, Catalog No. KA849R1, contains an assortment of roll pins, cotter pins, retaining rings, stop nuts, etc.common hardware parts used in Cooper Power System switches that may not be readily available locally.

To assure correct receipt of any parts order, always include switch type and serial number. Because of Cooper Power Systems' continuous improvement policy, there may be instances where the parts furnished may not look exactly the same as the parts ordered. However, they will be completely interchangeable without any rework of the switch.

All parts carry the same warranty as any whole item of switchgear, i.e. against defects in material or workmanship within a period of one year from date of shipment.

Figure 9.
Bushing parts.

Bushing Parts (Figure 9)

Item No.	Description	Catalog Number	Quan. Req'd.
1	Bushing assembly, 15 Kv (consists of items 12 through 15)		
	13-inch standard creepage	KA717R25	6
	13-inch standard creepage with BCT accy.	KA717R26	6
	17-inch extra-creepage	KA717R27	6
	17-inch extra-creepage with BCT accy.	KA717R28	6
2	Bushing assembly 27 Kv through 38 Kv		
	Standard	KA56RV3	6
	Standard bushing with BCT accy.	KA56RV4	6
3	Nut, 1/2-20 UNF, hex jam, brass	K8807253200050K	AR
4	Washer, flat	KP2028A3	AR
6	Lockwasher, 1/2, med, brz	K900830050000A	AR
	Lead, used with 15 Kv bushings (6 used, 4-3/16 long)	KP3256A4	36
7	Lead, used with 27-38 Kv bushings		
	(6 used, 4-3/16 long)	KP3256A4	18
	(6 used, 3-3/16 long)	KP3256A2	18
8	Screw, 3/8-16 UNC x 2-1/4, hex hd, stl.	K730101137225Q	18
9	Bushing clamp	KP1109R	18
10	Clamping ring	KP1111R	6
11	Lower bushing gasket	KA1193R	6
12	Terminal assembly	KA17W901	1
13	Upper bushing gasket	KP2090A57	1
14	Bushing ceramic, 15 Kv 13-inch standard creepage 13-inch standard creepage with	KP1110R	1
	BCT accy.	KP171W	1

Item No.	Description	Catalog Number	Quan. Req'd.
15	17-inch extra-creepage 17-inch extra-creepage with BCT accy. Bushing rod assembly, 15 Kv Standard and extra-creepage Standard and extra-creepage with BCTaccy.	KP1578R KP186W KA716R20 KA716R21	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
The following parts are applicable to the bushing current transformer accessory.			
16	Capscrew, hex hd, 3/8-16 x 1-7/8, stl.	K730101157187Q	3
17	Transformer clamping flange	KP170W1	1
18	Flange gasket	KP2090A73	2
19	Replacement current transformer 600:5 multi-ratio 1200:5 multi-ratio	KA159W1S KA132W	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
20	CT washer, used with plastic housing CT's	KP312W	1
21	Capscrew, hex hd 3/8-16 x 1 stl.	K730101137100Q	3
22	Transformer clamping sleeve	KP169W1	1
23	O-ring gasket, used with transformer clamping sleeve that has machined groove. Old style clamping sleeve, without groove, use KP2090A66.	KP2000A64	1
24	Hex nut, 3/8-16, stl.	K880201116037Q	3
25	Stud	KP3149A40	1
26	Bushing spacer	KP275W1	1

Figure 10.
Frame and tank parts.

Tank and Frame Assembly (Figure 10)

Item No.	Description	Catalog Number	Qty. Per Assy.
1	Gasket	KP1202FS	1
2	Guard assembly	KA217FS	1
3	Tank	KP155TSC2	1
4	Nipple	KP2039A1	1
5	Valve	KP2038A1	1
6	Plug	KP2007A3	1
7	Ground clamp	KA227H	1
8	Screw, 1/2-13UNC x 1,		
9	hex hd., stl.	K730101150100Q	26
10	Flame assembly	Lockwasher, 1/2, internal tooth	KA235FS
11	K901001050000Z	24	
12	Nut, 1/2-13UNC, hex, stl.	K880201113050Q	8

| Item
 No. | Description |
| :---: | :--- | :--- | :---: |\(\left|\begin{array}{c}Catalog

Number\end{array} \quad $$
\begin{array}{c}\text { Qty. } \\
\text { Per } \\
\text { Assy. }\end{array}
$$\right|\)

Figure 11.
Head assembly.

Head Assembly (Figure 11)

Item No.	Description	Catalog Number	Qty. Per Assy.
1	Plate	KP1259FS	1
2	Screw, \#8-32UNC x 1/2, hex hd., st. stl.	K722415108050A	2
3	Lockwasher, \#8, internal tooth, st. stl.	K901015008000A	2
4	Screw, \#10-24UNC x 1/2 rd hd., st. stl.	K721515110050A	2
5	Lockwasher, \#10, med, st. stl.	K900815010000A	2
6	Bottom plate	KP1201FS	1
7	Cover	KP1228FS	1
8	Screw, \#12 $\times 1 / 2$, self tapping, rd hd., st. stl.	K781515112050A	5
9	Bushing	KP3046A29	1
10	Washer	KP2028A23	12
11	Screw, 1/2-13UNC x 3-1/2, hex hd., stl.	K730101150350Q	12
12	O-ring	KP2000A9	1
13	Dipstick	KA106TSC	1
14	Lifting lug	KP456H2	2
15	Lockwasher, 5/8, med., stl.	K900801062000Z	2
16	Screw, 5/8-11UNC x 1-1/2, hex hd., stl.	K730101162150Q	2
17	Screw, 1/2-13UNC x 1-1/4, hex hd., stl.	K730101150125Q	1
18	Ground clamp	KA227H	1
19	Gasket	KP2103A15	1
20	Mounting bar	KP1188FS	2
21	Lockwasher, 5/16, med., stl.	K900801031000Z	12
22	Screw, 5/16-18UNC x 1 , hex hd., stl.	K730101131100Q	18
23	Shaft	KP1186FS	1
24	Retaining ring, C-type, WA514	K970901250000M	8
25	Pin	KP3124A77	3
26	Lever	KP1168FS	3
27	Retaining ring	KP2013A33	6
28	Bracket	KP1167FS	6
29	Bushing	KP548RC2	6
30	Nut, 3/8-16UNC, hex, stl.	K880201116037Q	24
31	Lockwasher, 3/8, med. stl.	K900801037000Z	54
32	Screw, 3/8-16UNC x 3/4, hex hd., stl.	K730101137075Q	18
33	Spacer	KP3013A90	12
34	Plate	KP1183FS	3
35	Screw, 3/8-16UNC x 3-1/2, hex hd., stl.	K730101137350Q	12
36	Washer, $3 / 8$ stl.	K900201037000Z	12
37	Screw, $3 / 8-16 U N C \times 1-1 / 4$, hex hd., stl.	K730101137125Q	18

Item No.	Description	Catalog Number	$\begin{gathered} \text { Qty. } \\ \text { Per } \\ \text { Assy. } \end{gathered}$
38	Stringer assembly	KA208FS	6
39	Clamp	KP1175FS	3
40	Clamp bar	KP1176FS	3
41	Lockwasher, 5/16, med., stl.	K900801031000Z	6
42	Screw, 5/16-18UNC x 1-3/8, hex hd., stl.	K730101131137Q	6
*43	Vacuum interrupter	KA225VS-2	3
*43A	Vacuum interrupter		
	15.5 Kv	KA234FS-1	3
	27-29.2 Kv	KA234FS-2	3
	38 Kv	KA234FS-3	3
44	Brace	KP1272FS	3
44A	Brace	KP1180FS	3
45	Clamp	KP1227FS	3
46	Capscrew socket head	KP2036A31	6
47	Washer, $5 / 16$, internal tooth, brz.	K901032031000A	6
48	Plate	KP1182FS	3
49	Current exchange assembly	KA210FS	3
50	Screw, 3/8-16UNC x 1 , hex hd., stl.	K730101137100Q	6
51	Retaining ring, C-type, WA516	K970901312000M	19
52	Pin	KP3125A37	6
53	Nut, elastic stop	KP2020A3	3
54	Link	KP1171FS	6
55	Link	KP1172FS	6
56	Spacer	KP3007A145	1
57	Spring	KP123RC1	3
58	Washer, \#14, brass	K900525026056A	3
59	Screw, 1/4-20UNC x 3 , hex hd., stl.	K730101125300Q	3
60	Nut, elastic stop	KP2020A10	3
61	Pin	KP1170FS	3
62	Spring	KP1177FS	3
63	Spacer	KP3011A139	3
64	Rod	KP1169FS	3
65	Roll pin, 7/32 x 1-1/4	K970801218125C	3
66	Rod	KP1200FS	1
67	Spacer	KP3017A56	2
68	Pin	KP3124A77	1
69	Lever	KP1187FS	1
70	Roll pin, 1/4 $\times 1-114$	K970801250125C	1
71	Nut pin	KP86L	12
72	Plug, 1/2	KP2007A3	1

*Replace interrupters with same type, as was removed, or premature failure will result.

Figure 12.
Mechanism assembly, view 1.

Mechanism Assembly (View 1) (Figure 12)

Item No.	Description	Catalog Number	Qty. Per Assy.
1	Screw, 3/8-16UNC x 3/4, hex hd., stl.	K730101137075Q	6
2	Lockwasher, 3/8, med., stl.	K900801037000Z	6
3	Nut, 3/8-16UNC, hex, stl.	K880201116037Q	6
4	Pin	KP3200A37	1
5	Lever	KP1210FS	1
6	Retaining ring, C-type, WA514	K970901250000M	1
7	Link	KP1209FS	1
8	Retaining ring, C-type, WA516	K970901312000M	1
9	Connecting rod end	KP216FS	1
10	Lever and pin assembly	KP219FS	1
11	Bracket assembly	KP221FS	1
12	Shaft assembly, includes item 10	KP214FS	1
13	Decal, closed	KP1164KM	1
14	Decal, open	KP1165KM	1
15	Auxiliary switch (AS)	KP612R33	1
16	Lockwasher, \#10, med., st. stl.	K900815010000A	2
17	Screw, \#10-24UNC x 2-1/2, rd hd., st. stl.	K721515110250A	2
18	Roll pin, 7/32 x 1, st.	K970801218100A	1
19	Retaining ring, C-type, WA510	K970901188000M	8
20	Pin	KP3123A55	1
21	Rod	KA1143FS	1
22	Retaining ring, C-type, WA518	K970901375000M	2
23	Washer, flat, 3/8, stl.	K900201037000Z	1
24	Spring	KP139NL-V1	1
25	Bushing	KP3034A30	1
26	Spring	KP157VR	1
27	Roll pin, 1/16 x 3/8, stl.	K970801062037C	1
28	Rod	KP1021FS	1
29	Pin	KP3123A36	2
30	Spring	KA141GN-E1	2
31	Nut, hex, \#6-32UNC, st. stl.	K881015132006A	6

Item No.	Description	Catalog Number	$\begin{aligned} & \text { Qty. } \\ & \text { Per } \\ & \text { Assy. } \end{aligned}$
32	Lockwasher, \#6, med., st. stl.	K900815006000A	6
33	Microswitch (S2, S3, S4)	KP2181A4	3
34	Screw, hex hd., 5/16-18UNC x 3-1/2, stl.	K730101131350Q	3
35	Lockwasher, 5/16, med., stl.	K900801031000Z	3
36	Screw, \#6-32UNC x 1-1/8 rd hd., st. stl.	K721515106112A	6
37	Screw, \#10-24UNC $\times 5 / 8$, rd hd., st. stl.	K721515110062A	3
38	Washer, flat, \#10, med., stl.	K900201010000Z	3
39	Solenoid coil (TC)	KP1259M1	1
40	Nut, elastic stop	KP2020A13	3
41	Spacer	KP1065FS	3
42	Bracket	KP1064FS	2
43	Spacer	KP3011A131	3
44	Manual trip ring	KP113FS	1
45	Instruction plate	KP1100FS	1
46	Screw, \#4 x 3/16, self tapping, rd hd., st. stl.	K801515004018A	6
47	Guide bracket	KP1144FS	1
48	Screw, \#8-32UNC x 1/2, rd hd., st. stl.	K721515108050A	4
49	Pin	KP3123A52	1
50	Handle assembly	KA180FS	1
51	Instruction plate	KP1216FS	1
52	Name plate	KP1098FS	1
53	Window	KP1240M	2
54	Nut, push-on	KP2005A1	8
55	Lockwasher, \#8, med., st. stl.	K900815008000A	6
56	Nut, hex, \#8-32UNC, st. stl.	K881015132008A	6
57	Bracket	KP1219FS	1
58 59	Screw, \#6-32UNC x 3/8, self tapping, rd hd., st. stl.	K751515106037A KA28C08	2

Figure 13.
Mechanism assembly, view 2.

Mechanism Assembly (View 2) (Figure 13)

Item No.	Description	Catalog Number	Qty. Per Assy.
1	Guide	KP1066FS	1
2	Spacer	KP3017A44	1
3	Clip	KP1088FS	2
4	Nut, elastic stop	KP2020A7	1
5	Spring	KP1138FS	1
6	Screw, 5/16-18UNC x 3/4, hex hd., stl.	K730101131075Q	3
7	Lockwasher, 5/16, med., stl.	K900801031000Z	3
8	Retaining ring, C-type, WA514	K970901250000M	4
9	Pin	KP3124A59	2
10	Screw, 1/4-20UNC x 1/2 hex hd., stl.	K730101125050Q	1
11	Lockwasher, 1/2, med., st.	K900801025000Z	1
12	Link	KP1011FS	2
13	Spacer	KP3007A12	2
14	Stop	KP1018FS	1
15	Nut, elastic stop	KP2020A6	1
16	Spring	KP1066VWS	1
17	Spacer	KP3004A60	2
18	Microswitch (S1)	KP2181A4	1
19	Lockwasher, \#6, med., st. stl.	K900815006000A	10
20	Screw, \#6-32UNC x 1-3/4 rd hd., st. stl.	K721515106175A	1
21	Screw, 1/4-20UNC x 1 hex hd., st.	K730101125100Q	1
22	Lockwasher, 5/16, med., st.	K900801031000Z	3
23	Bracket	KP1089FS	1
24	Pin	KP1090FS	1
25	Spring	KP1139FS	2
26	Screw, \#6-32UNC x 1-1/8 rd hd., st. stl.	K721515106112A	1
27	Motor assembly (M)	KA136FS	1
28	Spacer	KP3011A128	2
29	End plate assembly	KA116FS	1
30	Screw, $5 / 16$-18UNC $\times 3$ hex hd., st.	K730101131300Q	2
31	Screw, \#6-32UNC x 1/2 rd hd., st. stl.	K721515106050A	9

Item No.	Description	Catalog Number	Qty. Per Assy.
32	Receptacle, 19 pin (R2)	KP231FS	1
33	Nut, \#6-32UNC, hex, st. stl.	K881015132006A	8
34	Receptacle, 8 pin (R1)	KP232FS	1
35	Retaining ring, C-type, WA516	K970901312000M	4
36	Pin	KP3125A35	1
37	Spacer	KP3009A185	1
38	Pin	KP1002FS	1
39	Nut, 3/8-16UNC, hex, stl.	K880201116037Q	2
40	Lockwasher, 3/8, med., stl.	K900801037000Z	2
41	Screw, 3/8-16UNC x 3/4, hex hd., stl.	K730101137075Q	2
42	Rod	KP1214FS	1
43	Guide	KP222FS	1
44	Nut, 1/4-20UNC hex,stl.	K880201120025Q	2
45	Lockwasher, 1/4, med. stl.	K900801025000Z	2
46	Screw, 1/4-20UNC x 5/8, hex hd., stl.	K730101125062Q	2
47	Heater (H)	K999904310084A	1
48	Nut, \#8-32, hex, st. stl.	K881015132008A	2
49	Lockwasher, \#8 med., st. stl.	K900815008000A	2
50	Screw, \#8-32 x 1/2, rd hd., st. stl.	K721515108050A	6
51	Plug	KP2041A16	1
52	Instruction plate	KP1099FS	1
53	Screw, \#4 x $3 / 16$, self tapping, rd hd., st. stl.	K801515004018A	2
54	Eye bolt	KP322H2	1
55	Nut, 3/8-16UNC	K881101116037W	1
56	Nut, 5/16-18UNC, hex, stl.	K880201118031Q	2
57	Clip	KP2006A13	2
58	Panel	KP1208FS	1
59	Marker strip	KP2101A221	1
60	Terminal strip (TB)	KP2101A21	1
61	Lockwasher, \#8, internal tooth, brz.	K901032008000A	4
62	Varistor assembly (V)	KA1138ME	1

COOPER Power Systems

[^0]: These instructions do not claim to cover all details or variations in the equipment, procedure, or process described, nor to provide directions for meeting every possible contingency during installation, operation, or maintenance. When additional information is desired to satisfy a problem not covered sufficiently for the user's purpose, please contact your Cooper Power Systems sales engineer.

