

Cooper Power Systems

CP-No: E-No:	CP9805 Rev. 00 None
	Cat. Sec. 500
Page:	1 of 56

Partial Vacuum Flashover Phenomenon

November 1997 Insulated Conductor Committee Presentation

LOW CURRENT

SWITCHING

PHENOMENA

By: John M. Makal Staff Engineer Nov. 3, 1997 ICC Project 10-46

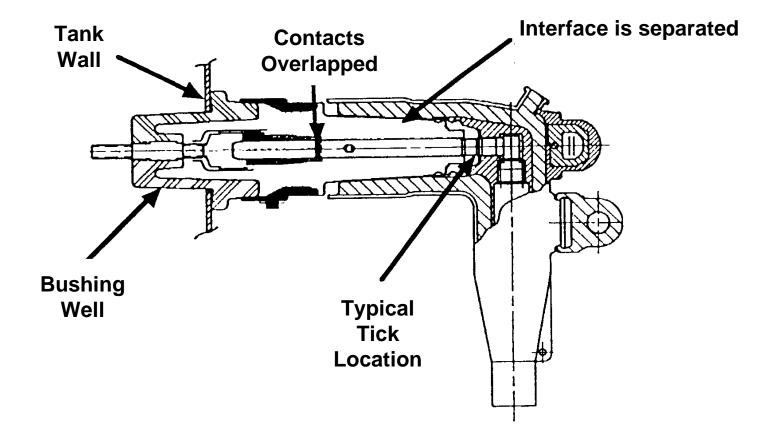
- History
- Products Involved
- Failure Modes & Effects
- Common Factors
- Testing Experience
- Hypothesis on Causes
- Possible Solutions

- History
 - Initial reports implicated capacitive switching
 - Long runs of cable
 - Particular configurations
 - Vacuum discounted contacts don't separate until after vacuum is dissipated

Products Involved:

- All manufacturers products involved
- Problem increases as voltage increases
- Elbows and caps on inserts and junctions
- Problems at all points of system
 - Open end of cable
 - At source end of dead ended cable
 - Opening loop

Failure Modes and Effects:


- Interface flashes during separation
- Flash self clears or operates system protection
- Requires significant downtime to replace inserts and elbows (flash results in carbon deposition)
- Exposes all in area to effects of free arc in air

Common Factors:

- Occurs prior to contact separation
- Low or now current
- Tick marks at back end of probe
- Occurs on both inserts and junctions
- Occurs with insulated and conductive cuffs

Common Factors:

- At 25 kV, most prevalent in Canada & North East and North Central U.S.
- More common below 35°F (2°C)
- Stuck interfaces increase probability
- Few incidents reported when switching higher load current (rarely done, results in outage)

Test Experience:

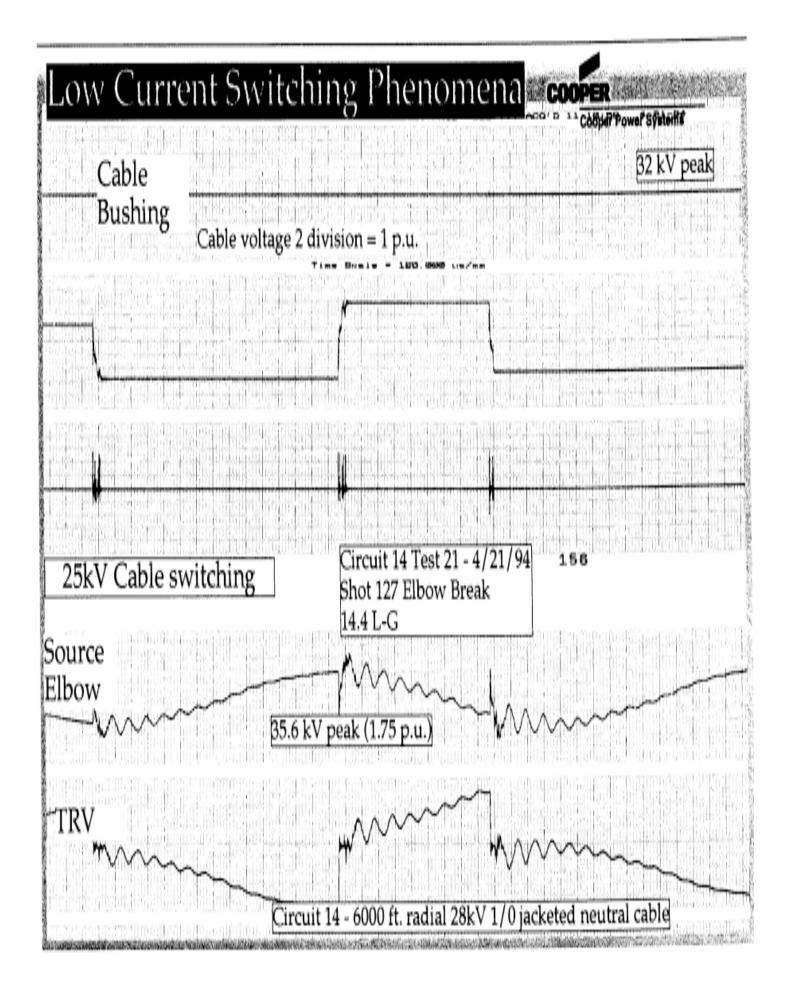
- Testing done with Wisconsin Public Service
- Dielectric Withstands in Air
- Switching elbows/caps with Wisconsin Electric Power
- Pressure Measurements
- Library Inputs

Test Experience - Wisconsin Public Service:

- Testing done at site of flashover, 44 live operations
- Voltages measured and recorded
- Believed cable switching cause
- Maximum voltage found was 41 kV Peak (2 P.U.) on a system with 14.4 kV RMS available
- No overvoltages measured on "Make" operation

Test Experience - Tests in Air:

- Series of elbows tested in air for voltage withstand
- Elbow/bushing interface separated; contacts touch
- 25 kV class elbows/bushings withstand 42 kV RMS (59.4 kV Peak)


- Test Circuits
 - Radials with transformer and without transformer
 - Branches with and without transformer
 - Simulate conditions with known flashover in field
- Locations of Switching Operations
 - Start, middle, and end of radial
 - Source end of branch
 - Middle of branch

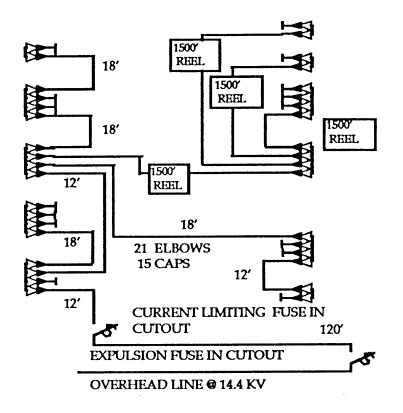
- Location of connector in circuit
 - Line side
 - Load side
- Switching speeds
 - Normal quick
 - Slow teasing

- Special conditions
 - Caps without ground leads
 - Insulated vs. semiconductive cap cuffs
 - Vacuum pulled on injection port elbow
 - Cable charged with DC voltage
 - Dirt on interface
 - Splice grease as lubricant to promote adhesion

- Cable training
 - Laid out on ground
- Energization History before switching
 - Immediate same day
- Voltage (nominal 14.4 kV to ground)
 - Maximum measured transient (35.6 kV; 1.75 p.u.)
- Switching done at 60° to 75°F, indoors

- Instrumentation
 - With and without dividers and recorders
 - High speed video
 - Standard VHS video
- Tests done through 11/94

Test Experience - Wisconsin Electric Power:


- WEPCO provides cable, connections to system
- Cooper provides manpower and site

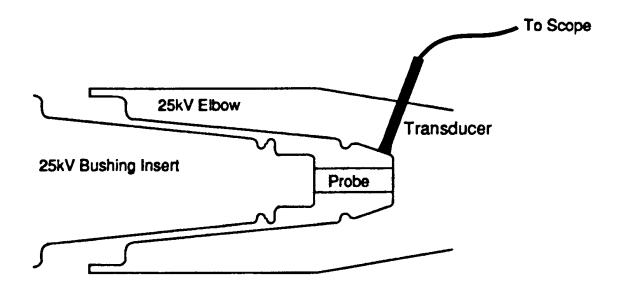
Conditions: Indoors (60 to 75°F); multiple operations on unaged parts

- Outdoor Test Circuits
 - Switching done outside
 - Parts continuously held at 14.4 kV LG between tests
 - Cables were left on reels
 - Tests run with and without instrumentation
 - Images captured on both high speed and normal VHS videotape
 - Tests run on junctions only

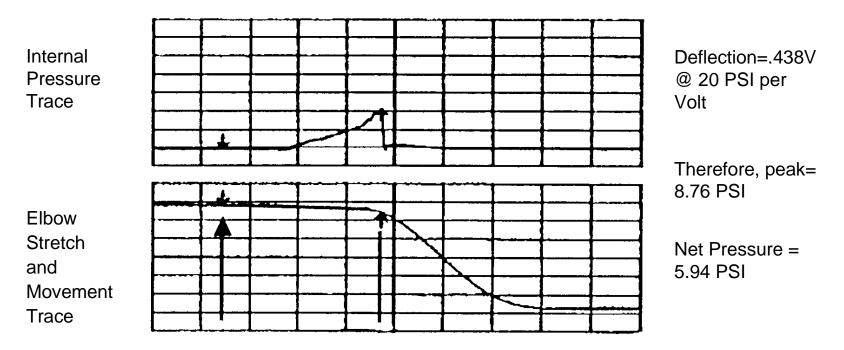
25 kV Low Current Test Circuit

CPS and WEPCO

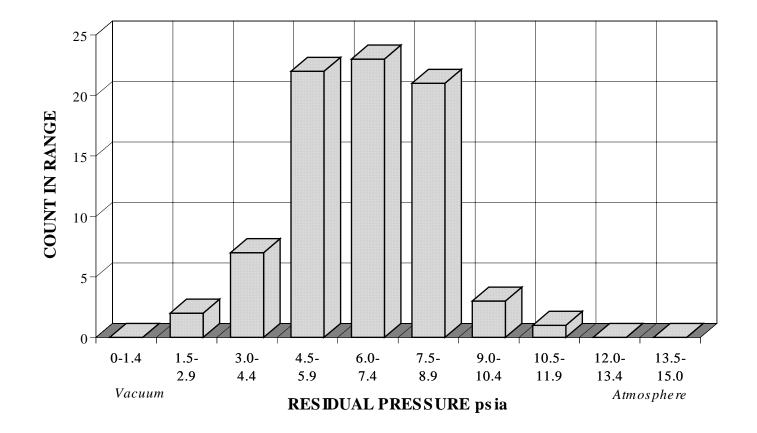
25 kV Cable Switching Test at Cooper Conducted Outdoors @ 14.4 lg; 28 kV 1/0 Solid Stranded Jacketed Neutral Cable					
	Ambient Conditions		Products Tested		
Date	Temp-°F	Relative	Elbows	Caps	
		Humidity	Flashed/Total	Flashed/Total	
11/2/94	60	-	0/3	0/1	
12/15/94	35	86%	0/2	1/6	
1/18/95	28	69%	0/11	1/10	
4/4/95	20	28%	0/16	3/12	
8/22/95	75	60%	0/13	0/9	
10/31/95	41	78%	0/17	0/12	
4/4/96	33	86%	0/20	1/16	
5/31/96	66	46%	0/19	0/13	
Summary-Temperature >35°F		0/52	0/55		
-Temperature ≤35°F			0/49	6/44	


INSERT SCAN

- Comparison between field and test experience
 - Flash occurs during removal
 - No or low current flow in most cases
 - Tick mark locations on probes are the same
 - Overcurrent protection may or may not operate
 - Temperatures of 35°F or lower tends to increase incidence
 - Stuck products experience a higher incidence rate


Test Experience - Pressure Measurements:

- Earlier tests show a reduction in pressure occurring during separation; discounted because switching does not start until after vacuum is dissipated
- Wish to know what level of vacuum occurs as elbows separate from mating bushings


Pressure Measurement - Test Modifications

Test 65 -Cooper Cap and Insert - Break Operation

Stretch before break = .38"; time/division = 50 mS

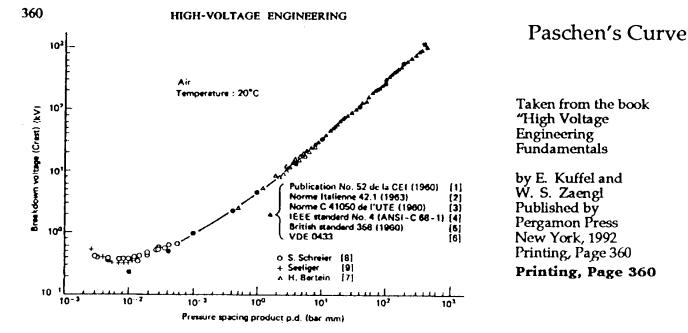
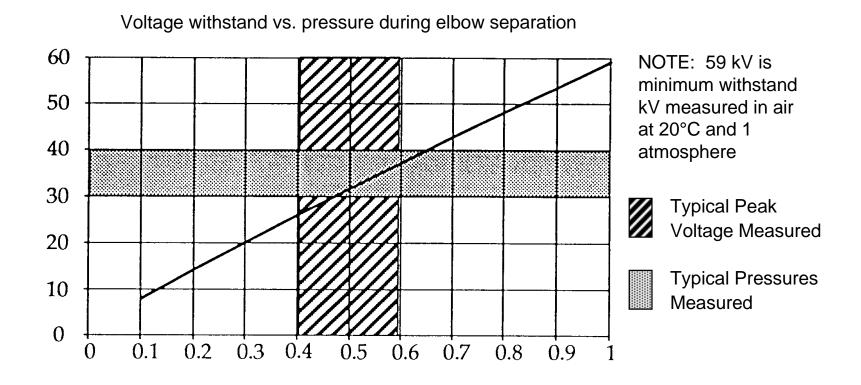


FIG. 5.23. Paschen curve for air in log-log scale. Temperature 20°C. (• calculated $V_{\mu} = 6.72\sqrt{pd} + 24.4(pd)$).⁽⁷⁴⁾ Note formula in bar-cm

Primary Failure Mode:


- Flashover along the 200A interface, immediately after separation of the interfaces. This will occur even before the contacts separate!
- Occurs before actual switching begins.

Hypothesis

• During separation, a partial vacuum is created, reducing the air pressure in the interface region. This reduced pressure lowers the dielectric strength along the interface, increasing the probability of a flashover, as system transients increase the stress.

Hypothesis comments:

- There are two probabilistic inputs:
 - The pressure/dielectric withstand
 - The peak voltage occurring in the system

Possible solution areas:

- Keep product same size/fit with existing bushings
- Heat elbows before operating (WEPCO experience)
- Maintain fresh lubrication
- Eliminate vacuum
- Increase creepage
- Increase dielectric withstand base level

Insert Scan

THE SOLUTION TO LOW CURRENT SWITCHING FLASHOVER PROBLEMS

By: John M. Makal Staff Engineer Nov. 4, 1997 ICC Project 10-50

THE SOLUTION TO LOW CURRENT SWITCHING FLASHOVER PROBLEMS

25 kV 200A Loadbreak Connectors

The Problem

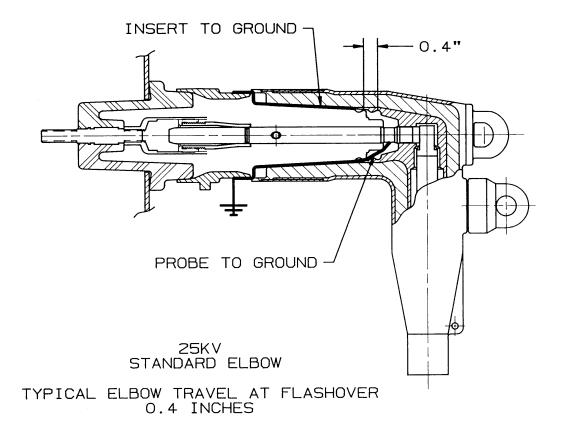
Primary Cause

The Solution

* Insulated Insert & Probe

Switching Test Protocol

Test Results

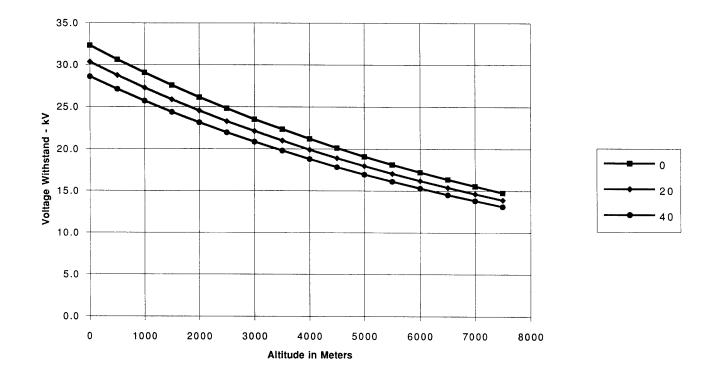

Field Trials

Features & Benefits

PROBLEM:

• Line-to-ground flashover when removing elbows and caps on lightly loaded or no load circuits.

PARTIAL VACUUM FLASHOVER PATH


PRODUCTS INVOLVED:

- Elbows and Caps
- Bushing Inserts, Junctions and Feedthru
 Insert
- All manufacturers
- All combinations

CONTRIBUTING FACTORS:

- Temperature below 40°F (5°C)
- Stuck or seized
- Low or no load current
- High altitude

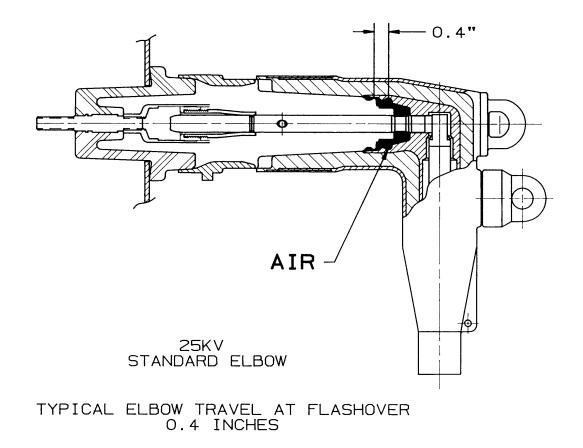
Voltage withstand versus Altitude at Various Temperatures (°C)

Based on relationship - Air density = Air Density Original * Exp^-0.00018*Altitude in meters, and Paschen's Law

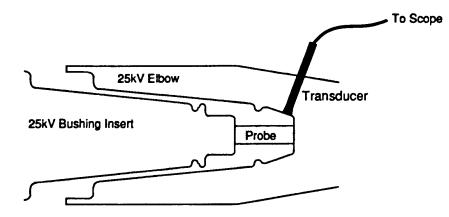
PARTIAL VACUUM EFFECT

Action:

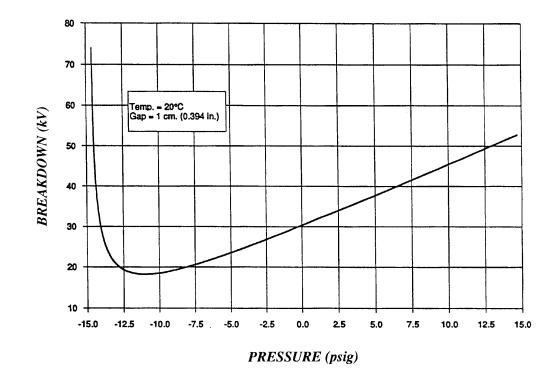
• Pulling elbow creates partial vacuum


Reaction:

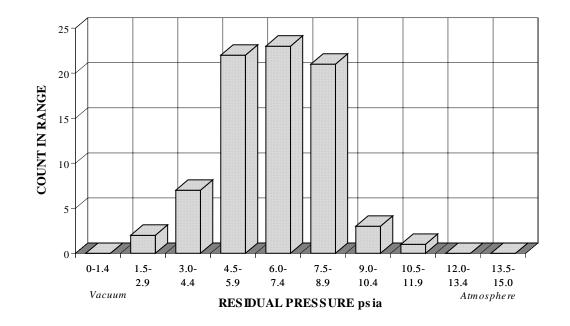
Reduction in dielectric breakdown level of air along interface


Physics:

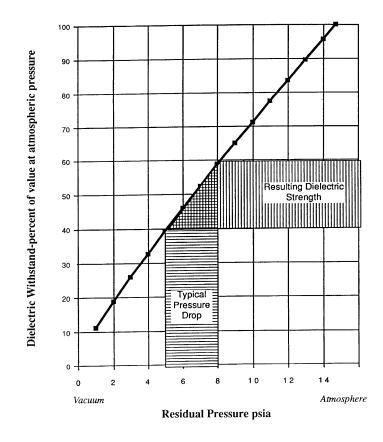
• Per Paschen's Law


INTERNAL AIR SPACE INSIDE ELBOW

PARTIAL VACUUM PRESSURE MEASUREMENT



PASCHEN'S LAW



MINIMUM INTERNAL PRESSURE DURING REMOVAL OPERATION

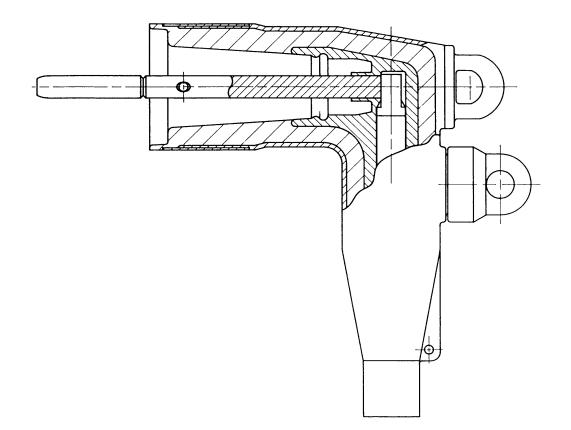
Elbows and Caps ('96 data)

AIR DIELECTRIC STRENGTH VS. PRESSURE

PRIMARY CAUSE:

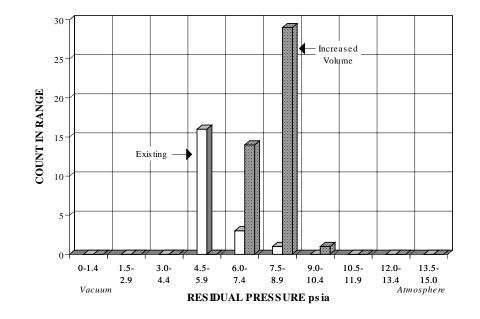
• Reduction of dielectric strength along interface due to creation of partial vacuum while pulling off elbow or cap (Paschen's Law).

<u>'96 PROPOSAL</u> INCREASED VOLUME INSERT

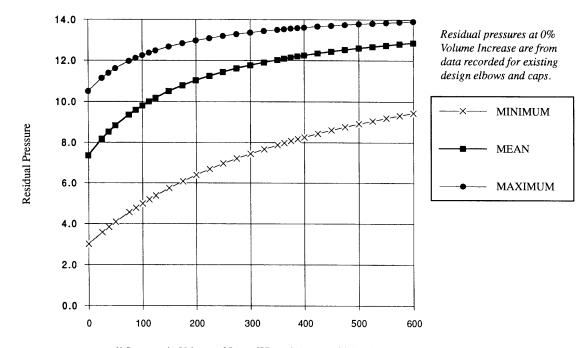

WHAT:

• Increase Air Volume of Semiconductive Insert

WHY:


- Reduces Partial Vacuum
- Increases Dielectric Breakdown Level

25 kV 200A ELBOW WITH INCREASED VOLUME INSERT


MINIMUM INTERNAL PRESSURE DURING REMOVAL OPERATION

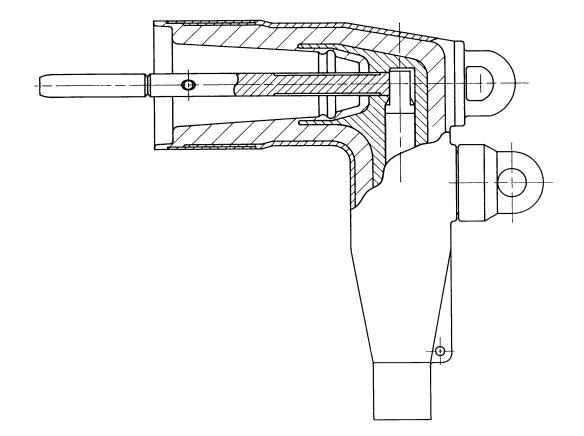
Existing vs. Increased Volume Cap ('97 data)

INCREASED VOLUME INSERT DESIGN

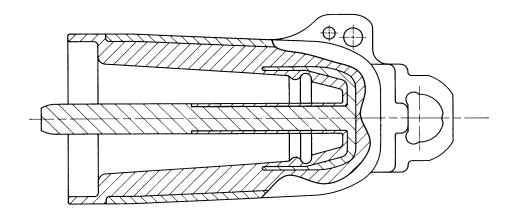
Residual Pressure vs. Increase in Volume of Insert

% Increase in Volume of Insert Where it Mates with Bushing

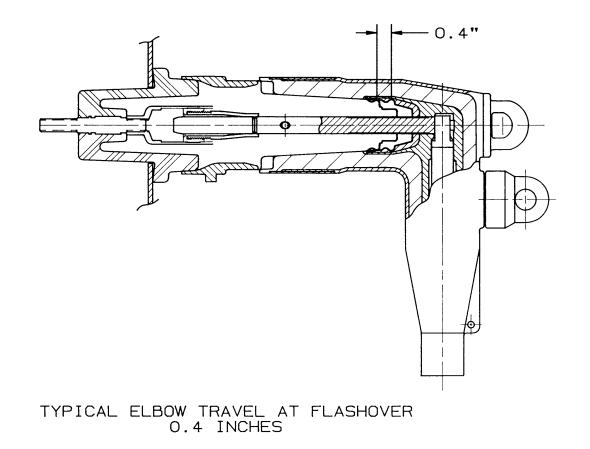
<u>COOPER'S '97 SOLUTION</u> INSULATED INSERT & PROBE


WHAT:

 Increase strike distance from live components to nearest ground plane

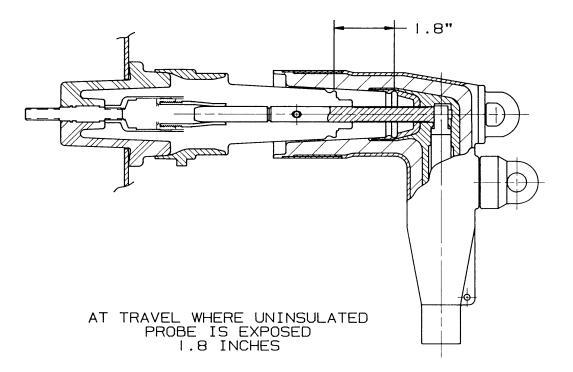

HOW:

 Cover semiconductive insert (faraday cage) and probe with insulation


25 kV 200A ELBOW WITH INSULATED INSERT & PROBE

25 kV 200A CAP WITH INSULATED INSERT & PROBE

25 kV 200A ELBOW WITH INSULATED INSERT & PROBE


ELBOW

"STRIKE DISTANCE"

After .4" of Travel

Existing Design	3.4"
Enhanced Switching	5.6"
% Increase	65%

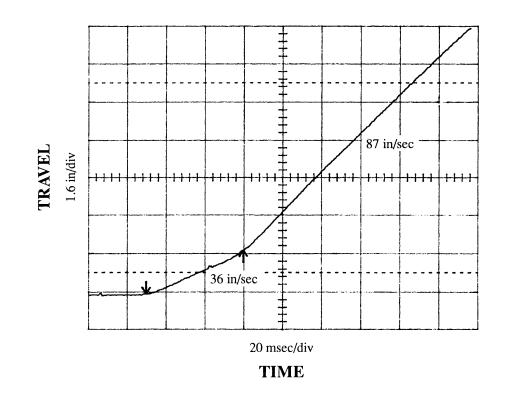
25 kV 200A ELBOW WITH INSULATED INSERT & PROBE

Design Qualification Tests

TEST	LEVEL	IEEE 386 SECTION	RESULTS PASS/TOTAL
Partial Discharge	19 kV	7.4	10/10
AC 1 minute	40 kV	7.5.1	10/10
Withstand			
Impulse Withstand	125 kV	7.5.3	10/10

LAB SWITCHING TEST PROTOCOL

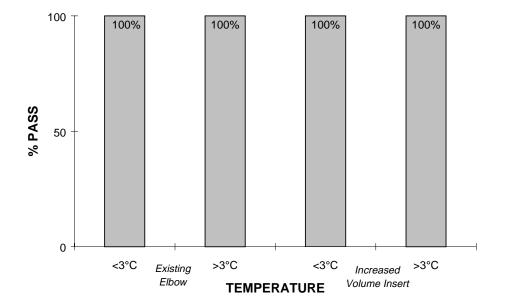
PROCEDURE:


- Assemble elbow/cap to bushing insert without grease
- Chill parts for a minimum of 16 hours at -20°C (-4°F)
- Mount and switch elbow/bushing assembly within 5 minutes after withdrawal from chiller
- Circuits shall be:
 - 27.5 kV line-to-ground
 - No load current
 - No adjacent ground
- Perform one seapration each on 12 samples assemblies

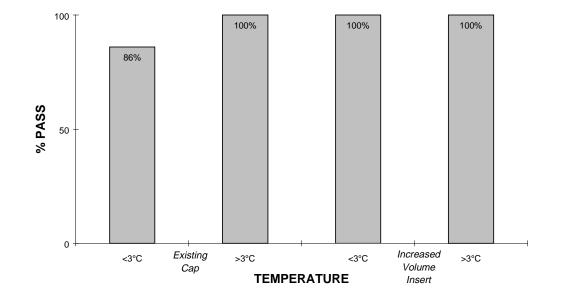
CRITERIA:

• 12 samples shall be operated without a flashover

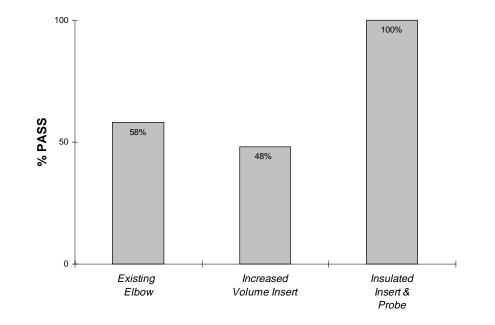
25 kV 200A SEPARABLE CONNECTOR


TRAVEL TRACE

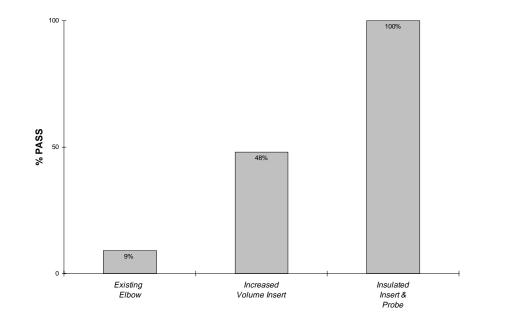
Robot actuator travel profile for elbows and caps @ -20°C


ELBOW

Switching Success Rate vs. Design and Temperature (14.4 kV)


CAP

Switching Success Rate vs. Design and Temperature (14.4 kV)



Switching Success Rate vs. Design (27.5 kV @ -20°C)

CAP

Switching Success Rate vs. Design (27.5 kV @ -20°C)

CAP

"ENHANCED SWITCHING DESIGN"

INTERCHANGEABILITY				
LOW CUF	RRENT SWITC	HING RI	ESULT	S
Test Voltage	Test	Teste	Pass	%
Line-to-	Temperature	d		Pass
Ground	°F/°C			
kV				
27.5	-20	10	10	100

CAPS tested on competitor's 25 kV 200A loadbreak bushing insert

INSULATED INSERT & PROBE DESIGN "VALIDATION"

FIELD TRIALS

Voltage: 14.4 kV L-G

Temperature: <40°F

Intervals: Between 1 and 4 weeks

Operations: >200

FEATURES AND BENEFITS OF THE "ENHANCED SWITCHING" ELBOW AND CAP

- Interchangeable with all new and installed bushings
- Field retrofittable without dropping load
- Retains the stress control provided by the faraday cage
- Requires no change in standard operating practices
- No flashovers due to partial vacuum effect

The following tables contain the raw data that the previous bar graphs were based on.

ELBOW

"STANDARD EXISTING DESIGN"

LOW CURRENT SWITCHING RESULTS				
Test Voltage	Test	Tested	Pass	%
Line-to-Ground	Temperature			Pass
kV	°F/°C			
14.4	<3	49	49	100
14.4	>3	52	52	100
27.5	-20	24	14	58
27.5	+20	12	12	100

CAP

"STANDARD EXISTING DESIGN"

LOW CURRENT SWITCHING RESULTS				
Test Voltage	Test	Tested	Pass	%
Line-to-Ground	Temperature			Pass
kV	°F/°C			
14.4	<3	44	38	86
14.4	>3	55	55	100
27.5	-20	11	1	9

ELBOW

"INCREASED VOLUME DESIGN"

LOW CURRENT SWITCHING RESULTS				
Test Voltage	Test	Tested	Pass	%
Line-to-Ground	Temperature			Pass
kV	°F/°C			
14.4	<i>∽</i> 3	95	95	100
14.4	>3	57	57	100
27.5	-20	21	10	48

CAP

"INCREASED VOLUME DESIGN"

LOW CURRENT SWITCHING RESULTS				
Test Voltage	Test	Tested	Pass	%
Line-to-Ground	Temperature			Pass
kV	°F/°C			
14.4	<3	74	74	100
14.4	>3	45	45	100
27.5	-20	20	8	40

ELBOW

"ENHANCED SWITCHING DESIGN"

LOW CURRENT SWITCHING RESULTS				
Test Voltage	Test	Tested	Pass	%
Line-to-Ground	Temperature			Pass
kV	°F/°C			
27.5	-20	20	20	100
27.5	+20	12	12	100

CAP

"ENHANCED SWITCHING DESIGN"

LOW CURRENT SWITCHING RESULTS				
Test Voltage	Test	Tested	Pass	%
Line-to-Ground	Temperature			Pass
kV	°F/°C			
27.5	-20	12	12	100
27.5	+20	12	12	100

PROBLEM:

• The IEEE 386 200A load switching test does not detect the partial vacuum failure mode.

WHY:

- Freshly lubricated interfaces
- Trapped pressure inside elbow on Make operation
- Break operation performed within minutes after Make

25 kV 200A LOADBREAK ELBOW and INSULATED PROTECTIVE CAP

TRAPPED AIR PRESSURE (psig) MAKE OPERATION

	MEAN	MIN	MAX
Elbow	10.7	9.4	13.8
Cap	10.5	9.6	13.4

PRESSURE DECAY RATE

%Initial Pressure = 100% e (.0075^t)

t=time after installation

INSULATED INSERT & PROBE DESIGN "QUALIFICATION"

IEEE 386-1995 TESTS	SECTION
DIELECTRICS	
Corona	7.4
AC Withstand	7.5.1
DC Withstand	7.5.2
Impulse Withstand	7.5.3
THERMAL	
Short-time Current	7.6
Current Cycling-Accelerated	7.10.1
Current Cycling-Off Axis	7.10.2
MECHANICAL	
Operating Force	7.14
Pulling Eye	7.15
OPERATING	
Switching	7.7
Fault Close	7.8
	DIELECTRICS Corona AC Withstand DC Withstand Impulse Withstand THERMAL Short-time Current Current Cycling-Accelerated Current Cycling-Off Axis MECHANICAL Operating Force Pulling Eye OPERATING Switching