

Components & Protective Equipment

Technical Data

SUBJECT: INSULATION COORDINATION

TD-192

TABLE OF CONTENTS

l.	Equipment Protection (Table 1)Page 2
11.	Margin of Protection CalculationPage 3
111.	Reference Insulation Information:
	Standard Insulation Levels Relative to BIL (Table 2)
	Insulation Classes for 1Ø Oil-Filled Distribution Transformers (Table 3)
	Insulation Test Standards for Oil-Filled Distribution Transformers (Table 4) Page 5

Page 1 of 5

II. EQUIPMENT PROTECTION

Table 1

Equipment Insulation Withstand Capability

IIIIIIIIIIII Silicon Carbide Arrester Protective Characteristics

Metal Oxide Arrester Protective Characteristics

Basic Concept of Equipment Protection is Insulation Coordination: limit voltage surges to a level below the equipment insulation withstand capability.

II. MARGIN OF PROTECTION CALCULATION

The margin of protection is generally determined at 3 points using the following method:

MP1 is the margin of protection in the fast front region and is defined as follows:

$$MP1 = \begin{bmatrix} CWW &] \\ [& -1 \end{bmatrix} \times 100$$
$$[FWPL &]$$

CWW = Chopped Wave Withstand
FWPL = Front of Wave Protective Level

MP2 is the margin of protection in the slower front range and is defined as follows:

$$MP2 = \begin{bmatrix} BIL &] \\ ---- & -1 \end{bmatrix} \times 100$$

BIL = Basic Insulation Level
DV = Discharge Voltage

The switching surge protective margin is defined as MP3 and is calculated as:

$$MP3 = \begin{bmatrix} BSL &] \\ \hline -1 &] x 100 \\ [SSPL &]$$

BSL = Basic Surge Withstand Level SSPL = Switching Surge Protective Level

III. REFERENCE INSULATION INFORMATION

Table 2

Standard Insulation Levels Relative to BIL				
Test Impulse	BIL Multiplier			
BIL - Standard 1.2 x 50μs Tail Chopped Impulse Switching Surge 100 x 1000 μs Fast Chopped Impulse	1.0 1.15 0.83 1.5			

These tests are referred to as withstand tests, as the objective of the test is to prove that the equipment insulation can withstand a given impulse voltage level without breaking down. The usual terminology assigned to the different types of withstand tests are:

BILfull wave test for distribution equipment

BSLswitching surge full wave test (transmission class equipment only)

CWWtail chopped wave test

Volt-Time Characteristic of Non-Restorable Insulation

III. REFERENCE INSULATION INFORMATION

Table 3
Insulation Classes for Single Phase
Oil-Filled Distribution Transformers

Rated High Voltage (V)	High Voltage Insulation Class (kV)	
2400/4160 Y	5.0	
4800/8320 Y	8.7	
7200/12470 Y	15.0	
12470 Grd Y/7200	15.0	
8000/13860 Y	15.0	
13860 Grd Y/8000	15.0	
12420	15.0	
13860	15.0	
14400/24940 Y	18.0	
24940 Grd Y/14400	18.0	
27600 Grd Y/16000	18.0	
34500 Grd Y/19920	25.0	
34500	34.5	

Table 4

Insulation Test Standards
for Oil-Filled Distribution Transformers

	n BIL and Full Wave Crest	Tail Chopped Wave		0.5 μs Front
Insulation Class (kV)		BIL and Full Wave Crest	BIL and Full Wave Crest	Chopped Wave Crest (kV)
1.2	30	36	1.0	45
5.0	60	69	1.5	90
8.7	75	88	1.6	113
15.0	95	110	1.8	143
18.0	125	145	2.25	188
25.0	150	175	3.0	225
34.5	200	230	3.0	300

