File Ref: 800-64 Page: 1 of 22

CERTIFIED TEST REPORT

COOPER POWER SYSTEMS FOUR POSITION SECTIONALIZING LOADBREAK SWITCH

12.5 kA Momentary and Making Rating

CERTIFICATION

Statements made and data shown are, to the best of our knowledge and belief, correct and within the usual limits of commercial testing practice.

n

Patrick H. Pride Senior Design Engineer

John Makal

Chief Product Engineer

Mana

Table of Contents

1.	Introdu	Introduction			
	1.1.	Applicab	le Industry Standards	4	
	1.2.	Additiona	al Mechanical Tests	4	
	1.3.	Independ	dent Laboratories	5	
2.	Scope			6	
3.	Certific	ation State	ement	7	
4.	Certific	ation Sum	nmary	7	
	4.1.	Interrupti	ing Current Tests	7	
		4.1.1.	Load Current Tests	7	
		4.1.2.	Magnetizing Current Tests	9	
		4.1.3.	Cable Charging Current Tests	11	
	4.2.	Momenta	ary Current Tests	12	
	4.3.	Making (Current Tests	13	
	4.4.	AC With	stand Tests	14	
	4.5.	Thermal	Tests	15	
	4.6.	Mechani	ical Operations Tests	16	
	4.7.	Impulse	Withstand Tests	17	
	4.8.	DC With	stand Tests	18	
	4.9.	One-sec	cond Current Test	18	
	4.10.	Pressure	e Test	19	
	4.11.	Vibration	n Test	19	
	4.12.	Packagir	ng Test	20	
	4.13. Operating Force Test				
	4.14.	14. Operating Travel Test			

1. Introduction

Continuous improvement is an ongoing objective and activity of Cooper Power Systems. Design improvements are initiated to integrate new design concepts and/or new technology, support continuous improvement, help maintain product competitiveness and provide features requested by customers. Recent changes to industry standards have affected the testing requirements for load break devices mounted in fluid filled tanks. Additionally, a new dielectric fluid has been introduced and verification of switch performance in this fluid is also required.

1.1. Applicable Industry Standards

The four position sectionalizing switch discussed herein has been designed for applications in padmounted transformers and switchgear. No single industry standard has been published that includes the performance criteria and test regimen for both these applications. Consequently, the requirements must be drawn from industry standards applicable to both transformers and switchgear. These include:

- IEEE Std C37.71-2001 IEEE Standard for Three-Phase, Manually Operated Subsurface and Vault Load-Interrupting Switches for Alternating-Current Systems
- IEEE Std C57.12.00-2000 IEEE Standard General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers

The Switchgear Committee of the IEEE Power Engineering Society has worked to better define the test requirements and methods for products under its charge. Most significant has been the inclusion of specific inherent transient recovery voltage (TRV) levels to the load switching tests. The power system response to current interruption generates TRV. Circuits with high TRV are more difficult to interrupt. The design of the product covered in this certified test report has been fully tested to the new TRV requirements.

Additionally, the product covered in this certified test report has been fully tested in three different dielectric fluids; transformer oil, R-Temp®, and Envirotemp® FR3[™]. The dielectric fluid surrounding the switch serves to insulate the current carrying parts from each other and ground. It also plays a critical role in controlling and extinguishing the arcs generated during switching tests. Different fluids will vary in their reaction to arcs and this necessitates testing to insure the design compensates for these differences.

1.2. Additional Mechanical Tests

The regimen for design verification testing consists of tests defined by industry standards and tests defined by the manufacturer, but influenced by the safety and product reliability needs of the user. Over time, the users have expressed interest in certain tests falling within the later category of testing. The methods and procedures for these tests are not defined by industry standards, but have been developed through years of design experience and summarized in this report. These tests are included in this report and include:

- Vibration Test
- Packaging Test
- Operating Force Test
- Operating Travel Test

1.3. Independent Laboratories

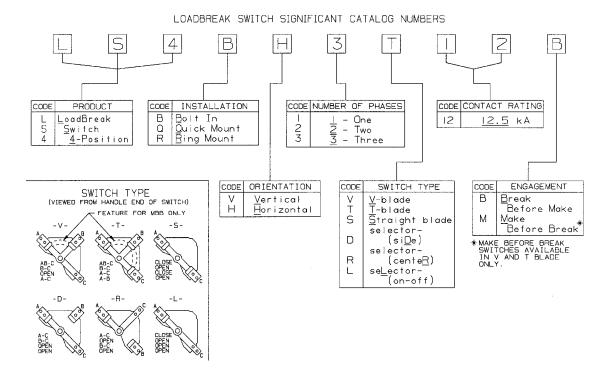
The Industry Standard switching tests were performed by third party certified laboratories. The following accredited testing facilities were used for electrical testing:

Thomas A. Edison Power Test Lab Franksville, WI A2LA Laboratory Certification #: 145701 Laboratorio de Pruebas de Equipos y Materiales (LAPEM) Irapuato, Mexico NMX-EC-17025-1MNC-2000 number EE-012-093/03

The following report summarizes testing completed on production samples to verify that published electrical and mechanical ratings to prescribed industry standards were attained.

2. Scope

The family of four position sectionalizing switches of Base Part Number LS4_ _12_, covered by the testing summarized here-in can be described functionally as:


A mounting system consisting of either a self-supporting or bolt-in switch body.

An operating/actuating system common to all switch assemblies, except the stored energy increases with increasing number of decks (phases) and increasing number of contacts engaged.

A dielectric system of insulation and switch body parts common to all switch assemblies.

A current carrying system consisting of conductors (blades, terminals, etc.) of a material and cross-section common to all switch assemblies including Break-Before-Make and Make-Before-Break "V" and "T" blade type switches, and a current interchange specific to "V" and "Selector Blade" switch configurations.

The switch samples tested incorporated each of the systems described above. Combinations of systems were selected to validate the design to the most onerous application. For example, the switch configurations that include both types of current interchanges ("V" or Selector blade types) were selected for the continuous current thermal tests. The switch configurations that required the most ("T" blade type) and least (Selector blade type) force to actuate for each mechanism variation were used for the mechanical life testing. The switch configurations that impressed all arc energy across only one contact gap ("V" or Selector blade types) were used for switching tests.

Wherever possible, the preferred ratings for the switches were obtained from industry standards. The preferred ratings that most closely match the applications for the switch family are defined in Table 2 of IEEE Std C37.71-2001 for Class 1 "Tap Switch" (not to be confused with tap changer switches used to adjust the turns ratio of transformers). However, testing was completed at higher than established ratings in two significant categories:

Line 5 of Table 2 requires Continuous Load Interrupting Current to be 200A at 27kV. The switch family described herein was tested to 300A at 27kV. This value was established by interpolation when the switch was first introduced in the 1970's and has been subsequently specified by many users.

E No:	E0315 Rev. 01	File Ref:	800-64
CP No.:	CP0316 Rev. 01	Page:	7 of 22

Line 8 of Table 2 requires a Short-time Current of 10kA symmetrical at 38kV. The switch family described herein has been tested to 12.5kA symmetrical at 38kV.

A switch capable of withstanding 16kA symmetrical momentary and making currents has been fully tested per IEC 60265-1998. See Certified Test Report CP0313 for more information on this switch.

3. Certification Statement

Design tests conducted and the data presented in this document are in accordance with all applicable sections IEEE Std C37.71-2001. Cooper Power Systems Four Position Sectionalizing Loadbreak switches rated 600A/15kV, 300A/27kV, 200A/38kV meet or exceed all applicable requirements of the above referenced standard in accordance with the following sections of this document.

4. Certification Summary

4.1. Interrupting Current Tests

4.1.1.Load Current Tests

Requirements

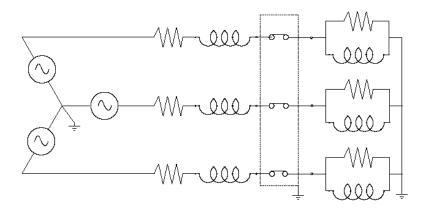
IEEE C37.71-2001 clause 6.2.1 establishes the following requirements to verify that the switch is capable of closing and interrupting currents within its ratings:

000 0 0 11 - 1

600A Switch				
Number of	Operations	Test Current – Based on 600 Amps		
Closing	Opening	Continuous Current Rating		
20	20	600 Amperes		
30	30	240 to 360 Amperes		
10	10	30 to 120 Amperes		

300A Switch

Number of	Operations	Test Current – Based on 300 Amps	
Closing	Opening	Continuous Current Rating	
20	20	300 Amperes	
30	30	120 to 180 Amperes	
10	10	15 to 60 Amperes	


200A Switch	
-------------	--

Number of	Operations	Test Current – Based on 200 Amps	
Closing	Opening	Continuous Current Rating	
20	20	200 Amperes	
30	30	80 to 120 Amperes	
10	10	10 to 40 Amperes	

E No:	E0315 Rev. 01	File Ref:	800-64
CP No.:	CP0316 Rev. 01	Page:	8 of 22

Procedures

Test set-up and methods were per IEEE C37.71-2001 clause 6.2.1. All testing was performed using three phase versions of the switch. A different switch sample was used for each test series table described above. Switch samples were horizontally mounted in a 95-gallon test tank and immersed in fluid. Switch mounting was performed in accordance with recommended mounting practices published in Cooper Power Systems Installation Instructions S800-64-2. A travel trace device was attached to the rear shaft to monitor contact position during switching. Voltage (potential) Transformers were employed to monitor arcing voltage, re-strikes and switch clearing time. Current Transformers were located to record load current in each phase. The test circuit was loaded to provide a load power factor of 70% to 80% lagging, and to obtain the required TRV (Transient Recovery Voltage). The following test circuit was used:

After completion of the tests on each switch, the fluid was pumped from the tank and reserved for reuse on future tests on the sample. No filtering of the fluid was done.

E No:	E0315 Rev. 01
CP No.:	CP0316 Rev. 01

Number of Close/Open Operations and Breaking Current (avg.)	Test Voltage (min – max)	TRV Peak Voltage and Time (avg.)	Fluid	
20 C/O At 638 A	15.65-15.97 kV	4.2.14/		
30 C/O At 331 A	15.63-15.74 kV	- 4.3 kV	Transformer Oil	
10 C/O At 63 A	15.65-15.74 kV	137 μs		
21 C/O At 644 A	15.75-15.89 kV	4.19 kV		
30 C/O At 334 A	15.70-15.93 kV	-	R-Temp	
10 C/O At 59 A	15.66-16.15 kV	141.35 μs		
21 C/O At 639 A	15.50-15.68 kV	4.19 kV		
30 C/O At 333 A	15.73-15.89 kV	-	EFR3	
10 C/O At 59 A	15.62-15.74 kV	141.35 μs		
24 C/O At 307 A	28.15-28.50 kV	0.05 10/		
30 C/O At 157 A	27.88-28.09 kV	9.95 kV	Transformer Oil	
10 C/O At 50 A	27.97-28.24 kV	288.34 μs		
23 C/O At 307 A	28.15-28.50 kV	9.95 kV		
32 C/O At 157 A	27.88-28.09 kV		R-Temp	
10 C/O At 50 A	27.97-28.24 kV	288.34 μs		
22 C/O At 305 A	27.7-28.5 kV	8.97 kV		
30 C/O At 156 A	27.9-28.1 kV		EFR3	
10 C/O At 50 A	27.9-28.2 kV	270.52 μs		
21 C/O At 204 A	38.0-38.4 kV	15.56 kV		
30 C/O At 102 A	38.1-38.6 kV		Transformer Oil	
11 C/O At 29 A	38.1-38.7 kV	409.62 μs		
21 C/O At 207 A	38.3-39.4 kV	16.14 kV		
30 C/O At 103 A	38.4-38.7 kV	-	R-Temp	
10 C/O At 30 A	38.2-38.6 kV	- 406.34 μs		
23 C/O At 205 A	38.1-38.7 kV	- 16.14 kV EFR3		
30 C/O At 103 A	38.4-38.8 kV			
10 C/O At 30 A	38.3-38.5 kV	406.34 μs		

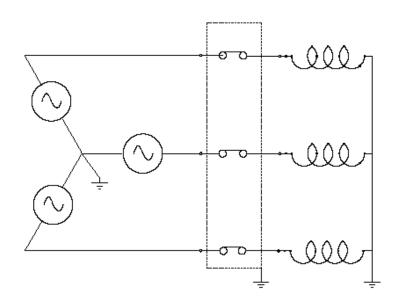
4.1.2. Magnetizing Current Tests

Requirements

IEEE C37.71-2001 clause 6.2.2 establishes the following requirements to verify that the switch is capable of closing and interrupting currents present when switching highly inductive loads such as motors or transformers.

15.5 kV Switch Rating				
Number of C	Operations	Test Current – Based on 15.5 kV		
Closing Opening		Switch Rating		
10	10	21 Amperes		

27.0	kV	Switch	Rating
------	----	--------	--------


Number	of Operations	Test Current – Based on 27.0 kV ⁽¹⁾		
Closing Opening		Switch Rating		
10	10	10.5 Amperes		

Note 1: For a continuous current rating of 300A, the Magnetizing current was derived by interpolation.

38.0 kV Switch Rating				
Number of (Operations	Test Current – Based on 38.0 kV		
Closing Opening		Switch Rating		
10	10	7 Amperes		

Procedures

Test set-up and methods were per IEEE C37.71-2001 clause 6.2.2. All testing was performed using the switch samples, test tanks, and fluid from Load Current switch testing. A travel trace device was attached to the rear shaft to monitor contact position during switching. Voltage (potential) Transformers were employed to monitor arcing voltage, re-strikes and switch clearing time. The test circuit was loaded to provide a load power factor of 5% to 10% lagging. The following test circuit was used:

Test Results

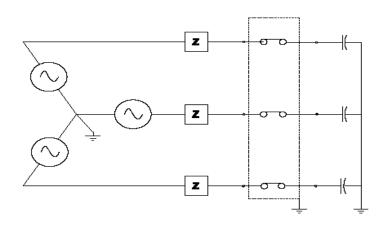
Number of Close/Open Operations and Breaking Current (avg.)	Test Voltage (min – max)	Fluid
10 C/O at 21.2 A	15.9-16.7 kV	Transformer Oil
10 C/O at 21.17 A	15.76-15.95 kV	R-Temp
10 C/O at 21.16 A	15.77-15.87 kV	EFR3
12 C/O at 11.5 A	27.85-27.97 kV	Transformer Oil
13 C/O at 11.5 A	27.85-27.97 kV	R-Temp
10 C/O at 11.7 A	28.0-28.2 kV	EFR3
11 C/O at 7.7 A	37.6-38.6 kV	Transformer Oil
15 C/O at 7.9 A	38.3-39.5 kV	R-Temp
11 C/O at 7.6 A	38.0-38.4 kV	EFR3

4.1.3. Cable Charging Current Tests

Requirements

IEEE C37.71-2001 clause 6.2.3 establishes the following requirements to verify that the switch is capable of closing and interrupting currents present when switching highly capacitive loads such as underground distribution cable.

15.5kV Switch Rating				
Number of Operations Test Current – Based on 15.5 kV				
Closing Opening		Switch Rating		
10	10	10 Amperes		


27.0kV Switch Rating				
Number of Operations Test Current – Based on 27.0 kV				
Closing Opening		Switch Rating		
10 10		25 Amperes		

38.0 kV Switch Rating

Number of Operations		Test Current – Based on 38.0 kV
Closing Opening		Switch Rating
10	10	40 Amperes

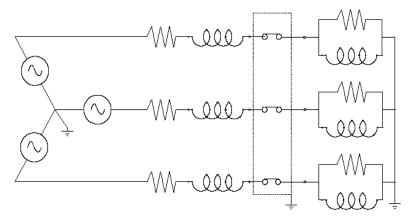
Procedures

Test set-up and methods were per IEEE C37.71-2001 clause 6.2.3. All testing was performed using the switch samples, test tanks, and fluid from Load Current switch testing. A travel trace device was attached to the rear shaft to monitor contact position during switching. Voltage (potential) Transformers were employed to monitor arcing voltage, re-strikes and switch clearing time. A capacitor bank was used to load the test circuit. The following test circuit was used:

E No:	E0315 Rev. 01	File Ref:	800-64
CP No.:	CP0316 Rev. 01	Page:	12 of 22

Number of Close/Open Operations and Breaking Current (avg.)	Test Voltage (min – max)	Fluid
20 C/O at 10.3 A	15.5-15.8 kV	Transformer Oil
20 C/O at 10.26 A	15.57-15.71 kV	R-Temp
20 C/O at 10.25 A	15.53-15.73 kV	EFR3
20 C/O at 25.3 A	27.87-28.15 kV	Transformer Oil
20 C/O at 25.3 A	27.98-28.19 kV	R-Temp
20 C/O at 25.3 A	28.0-28.3 kV	EFR3
20 C/O at 40.8 A	38.2-38.4 kV	Transformer Oil
20 C/O at 41 A	38.2-38.3 kV	R-Temp
20 C/O at 41 A	38.2-38.4 kV	EFR3

4.2. Momentary Current Tests


Requirements

IEEE C37.71-2001 clause 6.3.1 establishes the following requirements to verify that the switch is capable of withstanding through fault currents that may be present during down stream recloser operation. Three sets of three periods of current flow, with 10 seconds (+/-1) between each period, and 10 minutes between each set are required. Test voltage is required to be 50 volts minimum.

Switch Rating	Test Current and Duration	
15.5 kV	12 kA rms Sym., 18.6 kA rms Asym., 31.2 kA peak, 10 Cycles	
27.0 kV	12 kA rms Sym., 18.6 kA rms Asym., 31.2 kA peak, 10 Cycles	
38.0 kV	10 kA rms Sym., 15.5 kA rms Asym., 26.0 kA peak, 10 Cycles	

Procedures

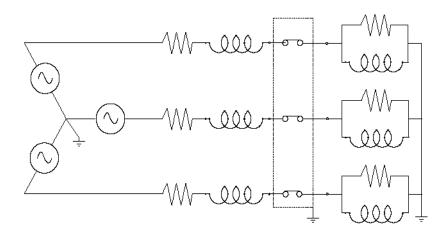
Test set-up and methods were per IEEE C37.71-2001 clause 6.3.1. After Interrupting Tests and prior to Momentary Tests, each switch was operated de-energized for fifty close-open operations. All testing was performed using the switch samples, test tanks, and fluid from Interrupting Current switch testing. The following test circuit was used:

E No:	E0315 Rev. 01	File Ref:	800-64
CP No.:	CP0316 Rev. 01	Page:	13 of 22

No. of	Test	Tested Values *		Fluid
Operations	Voltage	rms Sym	rms Asym	
9	5.8 kV	12.50-16.0 kA	21.7-23.2 kA	Transformer Oil
9	5.9 kV	12.50-15.69 kA	21.91-23.10 kA	R-Temp
9	5.9 kV	12.64-16.15 kA	21.84-23.04 kA	EFR3
9	5.8 kV	12.50-15.64 kA	20.33-22.14 kA	Transformer Oil
9	5.8 kV	12.50-15.70 kA	20.18-21.63 kA	R-Temp
9	5.8 kV	12.57-16.06 kA	22.3-23.0 kA	EFR3
9	5.8 kV	12.66-15.96 kA	21.4-23.3 kA	Transformer Oil
9	5.8 kV	12.50-15.68 kA	22.58-22.71 kA	R-Temp
9	5.8 kV	12.50-15.50 kA	20.84-22.23 kA	EFR3

* Values of 12,500 A rms Sym. and 19,375 A rms Asym. were targeted as minimums in order to demonstrate the ability of the switch to withstand the slightly higher current specified in IEC 60265-1998.

4.3. Making Current Tests


Requirements

IEEE C37.71-2001 clause 6.3.2 establishes the following requirements to verify that the switch is capable of closing into a faulted circuit. Three operations are required with a minimum duration of 10 cycles each.

Switch Rating	Test Current
15.5 kV	12 kA rms Sym., 18.6 kA rms Asym, 31.2 kA peak
27.0 kV	12 kA rms Sym., 18.6 kA rms Asym, 31.2 kA peak
38.0 kV	10 kA rms Sym., 15.5 kA rms Asym., 26.0 kA peak

Procedures

Test set-up and methods were per IEEE C37.71-2001 clause 6.3.2. All testing was performed using the switch samples, test tanks, and fluid from Interrupting and Momentary Current switch testing. The following test circuit was used:

No. of Operations	Minimum Cycles of Operation Duration	Test Voltage	Tested Current Value *	Fluid
3	10	15.80 kV	12.54 kA	Transformer Oil
3	10	15.63 kV	12.53 kA	R-Temp
3	10	15.63 kV	12.53 kA	EFR3
3	10	28.16 kV	12.60 kA	Transformer Oil
3	10	28.16 kV	12.60 kA	R-Temp
3	10	28.03 kV	12.62 kA	EFR3
3	10	38.15 kV	12.58 kA	Transformer Oil
3	10	38.15 kV	12.58 kA	R-Temp
3	10	38.15 kV	12.58 kA	EFR3

* Values of 12,500 A rms Sym. and 19,375 A rms Asym. were targeted as minimums in order to demonstrate the ability of the switch to withstand the slightly higher current specified in IEC 60265-1998.

4.4. AC Withstand Tests

Requirements

IEEE C37.71-2001 Table 1, column 3 defines the withstand test voltage requirements to verify the low frequency dielectric capabilities of the design.

Switch Rating	<u>4.4.1</u> New Switch Sample Test Voltage	<u>4.4.2</u> Aged Switch Sample Test Voltage
15.5 kV	35 kV rms	34 kV rms
27.0 kV	60 kV rms	40 kV rms
38.0 kV	70 kV rms	50 kV rms

Procedures

<u>4.4.1</u>

Test set-up and methods were per IEEE C37.71-2001 clause 6.4.5. Samples were tested prior to any aging tests in clean fluid and then again after switching tests. Each sample was tested with the contacts open and with the contacts closed. The tank was grounded for all tests. When the contacts were closed the A and C phases (the front and back deck) were energized and the B phase (the center deck) was grounded. Voltage was applied for one minute. When the contacts were open, one side of the switch had contacts A and C energized and contact B grounded, and the other side had A and C grounded with B energized. Again, the voltage was applied for one minute.

<u>4.4.2</u>

After completing the switching tests detailed in Section 4.1, 50 additional close-open operations, the momentary current tests detailed in Section 4.2 and the making tests per Section 4.3, the applied voltage tests described above were repeated. While the standards allowed for the test voltage to be reduced for the aged switch samples, the tests were conducted to the higher test voltages required for new switch samples. The same fluid used in the switching, momentary and making tests was also used for these tests.

<u>4.4.1</u>

Phase-to Earth Test	Phase-to-Phase	Across Open Contacts	Across Isolating	
Voltage	Test Voltage	Test Voltage	Distance Test Voltage	
70.2 kV rms	70.2 kV rms	70.2 kV rms	70.2 kV rms	

<u>4.4.2</u>

All switch samples successfully passed the 50 open/close operations test.

Switch Rating	Tested Value	Fluid
	35 kV	Transformer Oil
15.5 kV	60 kV	R-Temp
	60 kV	EFR3
	60 kV	Transformer Oil
27.0 kV	60 kV	R-Temp
	60 kV	EFR3
	70 kV	Transformer Oil
38.0 kV	70 kV	R-Temp
	70 kV	EFR3

4.5. Thermal Tests

Requirements

IEEE C37.71-2001 clauses 5.3.1 and 5.3.2 establish the temperature rise limits for testing of new samples. Clause 6.5.5 further requires "aged" switch samples to operate at continuous rated current and a stable contact temperature after being subjected to the interrupting, momentary current, and making current switch testing.

Procedures

Test conditions and procedures were per IEEE C37.71-2001 clause 6.5. Samples were mounted into a fluid-filled tank, following recommended installation practices. Thermocouples were added to the incoming cable, the termination connection, the incoming stationary contact, the switchblade, the outgoing terminal, the outgoing termination connection and the outgoing lead. Thermocouples were also placed in the oil 2" below the current carrying members and in the ambient air. For new switch samples, Table 4 of standard IEEE C37.71 defines the continuous current temperature rise limits of current carrying parts. Successful completion of the test requires the temperature rise to stabilize at a value below those published in the table.

For aged switch samples there are no temperature rise constraints specified by the standards. Rather, successful completion of the test requires the temperature rise to stabilize. A stable temperature is defined as no change in temperature for three consecutive readings at 30-minute intervals.

Test Results – Continuous Current – New Switch Samples

	Contact Temp Rise	Blade Temp Rise	Terminal Temp Rise	Fluid	
Rise over top oil	8.3°C	7.0°C	0.8°C	Transformer Oil	
Rise over ambient	34.1°C	32.8°C	26.6°C	Transformer Oil	

Current was 630 Amperes.

Test Results – Thermal Runaway – Aged Switch Samples

Contact Temp Rise	Connection Temp Rise	Terminal Temp Rise	Fluid
7.3°C	8.8°C	4.0°C	Transformer Oil
12.8°C	15.3°C	8.7°C	R-Temp
9.4°C	8.9°C	4.7°C	EFR3
9.1°C	8.8°C	4.1°C	Transformer Oil
13.6°C	13.7°C	7.3°C	R-Temp
10.3°C	10.3°C	4.1°C	EFR3
8.3°C	9.1°C	4.5°C	Transformer Oil
11.1°C	13.7°C	7.4°C	R-Temp
13.2°C	13.2°C	6.4°C	EFR3

All switches stabilized within 24 hours. Current was 630 Amperes. Temperature rises shown are over top oil temperature.

4.6. Mechanical Operations Tests

Requirements

IEEE C37.71-2001 clause 6.6 requires the switch sample to withstand 200 opening and closing operations without maintenance or replacement of any parts or components. It is performed after completion of the thermal runaway test, which in turn is done after completion of all other electrical and mechanical aging tests.

After completion, the switch should be capable of carrying rated current as evidenced by resistance measurements. The maximum resistance allowed in Cooper Power Systems internal production process is 240 micro-ohms. The switch must also be capable of passing the 60 Hertz Withstand voltage in Table, column 4. The 15.5 kV class switches require a withstand of 34 kV, the 27 kV class require 40 kV and the 38 kV require 50 kV.

Procedures

Test conditions and procedures were per IEEE C37.71-2001 clause 6.6. The same procedure as in Section 4.4 was employed.

Test Results

All switches were operated deenergized for 200 open-close operations. All switches subsequently passed AC Withstand and Resistance tests.

Switch Rating	Current Interchange Resistance (Maximum)	AC Withstand Tested Voltage	Fluid
	89 micro-ohms	60.2 kV *	Transformer Oil
15.5 kV	139 micro-ohms	60.2 kV *	R-Temp
	127 micro-ohms	60.2 kV *	EFR3
	136 micro-ohms	60.2 kV *	Transformer Oil
27.0 kV	190 micro-ohms	60.2 kV *	R-Temp
	88 micro-ohms	60.2 kV *	EFR3
	133 micro-ohms	60.2 kV	Transformer Oil
38.0 kV	102 micro-ohms	60.2 kV	R-Temp
	158 micro-ohms	60.2 kV	EFR3

* All switches were tested to the required value for a 38 kV switch.

4.7. Impulse Withstand Tests

Requirements

IEEE C37.71-2001 Table 1, column 2 defines the 1.2×50 microsecond waveform withstand test voltage requirements to verify the high frequency dielectric capabilities of the design. Additionally, IEEE C57.12.00 – 2000 Table 5 defines the chopped wave withstand test voltage requirements.

Switch Rating	1.2 x 50μ Sec Peak Test Voltage	Chopped Wave Peak Test Voltage
15.5 kV	95 kV rms	110 kV rms
27.0 kV	125 kV rms	145 kV rms
38.0 kV	150 kV rms	175 kV rms

Procedures

Test set-up and methods were per IEEE C37.71-2001 clause 6.4. Samples were tested prior to aging tests in clean fluid. Each sample was tested with the contacts open and with the contacts closed. The tank was grounded for all tests. With the contacts open, voltage was applied to contacts A and C phases (first and third deck) on one side of the switch, with B phase (second deck) grounded. On the other side of the switch, A and C contacts were grounded and voltage was applied to B. Three positive polarity and three negative polarity impulses were applied.

With the contacts closed, voltage was applied to A and C phases with the B phase grounded and the tank and the switch mechanism grounded. Three positive polarity and three negative polarity impulses were applied.

All models of the switch share the same dielectric design features (materials, spacing, etc.). Consequently the design was verified to its highest rating and testing conducted at this rating only.

Test Results

1.2 x 50μ Sec Tested Value	Chopped Wave Tested Value	Fluid
169.6 kV	196.0	Transformer Oil

4.8. DC Withstand Tests

Requirements

IEEE C37.71-2001 Table 1, column 5 defines the withstand test voltage requirements to verify that the switch is capable of withstanding the DC test voltages that may be applied to installed cable systems.

Switch Rating	Test Voltage
15.5 kV	53 kV
27.0 kV	78 kV
38.0 kV	103 kV

Procedures

Test set-up and methods were per IEEE C37.71-2001 clause 6.8. Test voltage was applied and held for 15 minutes at 103 kV. The test tank was grounded, as was the switch stored energy mechanism. Three separate tests were done:

- 1) With the contacts open, one side of the switch was energized with the contacts on the other side grounded.
- 2) With the contacts open, A and C phases (first and third deck) on one side of the switch and B phase (second deck) on the other side were energized with all the other contacts grounded.
- 3) With the contacts closed, A and C phases were energized and B phase grounded.

All models of the switch share the same dielectric design features (materials, spacing, etc.). Consequently the design was verified to its highest rating and testing conducted at this rating only.

Test Results

Tested Value	Fluid
103 kV	Transformer Oil

4.9. One-second Current Test

Requirements

IEEE C37.71-2001 clause 6.3.3 requires the switch to withstand a single current carrying test of a minimum of one-second duration at the rated momentary current level of 12.0 kA. After completion, the switch must be operable and capable of carrying rated current (630A) within rated temperature maximum of 75°C.

Procedures

Leads were connected to wire the A, B, and C phase together in series. With the contacts in the closed position, 12,500 amperes of current were passed through the circuit for one second. A value of 12,500 A was used in order to demonstrate the ability of the switch to withstand the slightly higher current specified in IEC 60265-1998. A two-second duration was used to satisfy a specific user request.

Results

Test Voltage	Current Duration	Momentary Test Current	Heat Run Current	Switch Max Temp	Fluid
240 V	2 sec	12,740 A	630 A	59.4°C	Transformer Oil

At the conclusion of the test, the switch was operated 200 times mechanically and subjected to a heat run to ensure that the current carrying ratings were not affected.

4.10. Pressure Test

Requirements

IEEE C37.71-2001 clause 6.9 requires that the switch samples maintain its tank seal and remain operable after being subjected to positive and negative tank pressures. Further, the product standards for padmounted transformers (IEEE C57.12.22-1993, IEEE C57.12.25-1990, and IEEE C57.12.26-1992) require the tank to remained sealed through an operating pressure range of -7 psig to +12 psig. The bottom of this range is established by calculating the internal tank pressure when the fluid temperature is -5°C. The cracking pressure of the pressure relief device established the top of this range.

Procedure

Samples of the Bolt-in, Ring Mount and Quick Mount switches were installed into tanks in the horizontal position using recommended mounting procedure. Internal tank pressures of -15 psig and +15 psig were used. Soap solutions, chalk and observations for liquids leaking from shafts or gasketed surface were used to determine seal integrity. Switches were operated while the tanks were at pressure extremes and after the pressure was relieved to check for any untoward effects of the pressurization.

Results

There was no sign of leakage. Switches operated normally during positive and negative tank pressure extremes and after the pressures were relieved.

4.11. Vibration Test

Requirements

The industry standards for HV switches do not define test requirements for vibration testing. However, utilizing methods developed for military and automotive applications, a procedure has been developed to test the product at frequencies and accelerations that can be anticipated as well as identifying and testing at the product's resonant frequency. The switch has been designed for horizontal mounting in a fluid filled tank. After installation in the tank, it must survive the forces associated with handling and shipping that tank.

Procedures

A switch sample with Quick Mount mounting system was installed in a 18"H x 12"W x 22"D test tank. Accelerometers were mounted on the switch shaft and 2-pound weights were secured to each of the switch terminals. The tank was filled with water and sealed. The tank and switch were secured to a vibration table and a series of accelerations applied. Upon completion of the tests, the tank seal was pressure tested to 15 psig, the switch tested for mechanical operation and visually inspected.

E No:	E0315 Rev. 01	File Ref:	800-64
CP No.:	CP0316 Rev. 01	Page:	20 of 22

Sine Sweep Test – Input vertical acceleration of 0.5 g (g= 32.16 ft/sec²) at frequencies from 5 Hz through 60 Hz to determine the resonant (highest output acceleration) frequency.

Resonant Frequency Endurance Test – Using the resonant frequency vibration test at the following accelerations and durations:

Input Acceleration	Duration
0.5 g	100,000 cycles
0.75 g	100,000 cycles
1.0 g	100,000 cycles

High Frequency Endurance Test – The following frequencies, accelerations and durations were used:

Input Acceleration	Frequency	Duration
0.5 g	120 Hz	2,000,000 cycles
0.5 g	240 Hz	2,000,000 cycles
0.5 g	360 Hz	2,000,000 cycles

Results

The resonant frequency was found to be 33 Hz. After all testing was completed, the tank was pressure tested at 15 psig for 24 hours and no leaks were found. The switch sample was mechanically tested and visually inspected and no anomalies were found. Test results are documented in test report AA-02-055-4G and Datasyst Engineering and Testing Services Project Report C115-10497.

4.12. Packaging Test

Requirements

The industry standards do not include this test regimen. However, these switches will be supplied to transformer manufacturers throughout the world. Consequently, the switch must be packaged to survive shipment to these manufacturers.

Procedure

A three phase, Quick Mount, Selector blade switch assembly and packaged hardware (handle, mounting nut, gasket, etc.) were packaged at the production facility and sent to Great Northern Corporation (GNC) for vibration, handling, and drop testing. The tests were conducted in accordance with ISTA (International Safe Transit Association) procedure 1A for packaged products weighing 68 kg or less.

Results

The entire assembly, including packaged handle hardware was tested at GNC's ISTA certified lab and passed the test regimen with no signs of damage. Test results are documented in test report AA-03-017-4T.

4.13. Operating Force Test

Requirements

The industry standards do not include these test regimens. Cooper Power Systems has developed internal requirements that the switch must require less than 25 foot-pounds (34 N m) of torque to move from one position to the next.

Procedure

One sample each of three phase Selector Blade, V-Blade, and T-Blade switches were horizontally mounted in an empty test tank using published installation instructions. A specially designed socket was placed over the operating handle. Torque was applied and measured with a digital recording torque wrench. Operating forces were checked while operating the switch as slowly as possible and also as rapidly as possible.

Results

When operated very slowly, the switch requires 18 to 28 foot-pounds (24 to 38 Newton-meters) of torque, which is well within normal ergonomic limits. When operated at a higher speed typical of that observed when utility personnel operate the switch, the operating force falls to 15 to 25 foot-pounds (20 to 34 Newton-meters).

4.14. Operating Travel Test

Requirements

The industry standards do not include this test regimen. Cooper Power Systems has established specifications that require that the switch must move from one position to the next with less than a 135° rotation.

Procedure

Using the same test set-up and a sample from the Operating Force Test, a protractor was centered on the tank wall used to mount he switch. As the switch was operated, the angular displacement needed to cause actuation was noted and recorded.

Results

The switch typically requires 115° to 125° to switch from one position to the next.

Quality from Cooper Industries P.O. Box 1640, Waukesha, WI 53187

REVISION TABLE

REVISION NO.	DATE	WHAT WAS ADDED/CHANGED
1	12/3/04	Section 4.6 Mechanical Operations Tests, changed milli- ohms to micro-ohms in text and table