Panelboard and switchboard series rating information manual

Play it safe...read this manual!

Powering Business Worldwide

Contents

Introduction	Page 2
UL Issues	Page 3
Code Issues	Page 3
Applying Series Ratings	Page 4
Example 1	Page 4
Example 2	Page 4
Example 3	Page 4
Other Applications of Series Ratings	Page 4
Series Rating Tables	Page 5
Breaker to Breaker Ratings	
Table 1 - 120/240 Volts	Pages 5, 6 \& 7
Table 2 - 240 Volts.	Pages 8 \& 9
Table 3-277 Volts.	Page 11
Table 4 - 277/480 Volts	Page 12
Table 5-480 Volts.	Page 13
Table 6 - 600 Volts	Page 15
Fuse to Breaker Ratings	
Table 7 - 120/240 Volts	Page 16
Table 8 - 240 Volts.	Page 17
Table 9 - 277 Volts.	Page 17
Table $10-277 / 480$ Volts	Page 18
Table 11 - 480 Volts	Page 18
Table $12-600$ Volts	Page 19
Triple Ratings	
Table 13	Page 20

Introduction

The purpose of this publication is to explain the proper application of series ratings in Eaton's panelboards and switchboards.
Industry standards and NFPA ${ }^{\circledR} 70$-the National Electrical Code ${ }^{\circledR}$ (NEC ${ }^{\circledR}$) require protection of the entire electrical distribution system from damage due to short-circuit faults. NEC Article 110.10 states "The overcurrent protective devices...shall be selected and coordinated to permitthe circuit-protective devices used to clear a fault to do so without extensive damage to the electrical components of the circuit." The entire distribution system is required to meet this standard. Series rated systems have become an effective method of meeting these requirements.

There are three protection systems used to protect low voltage power distribution conductors and equipment. They are:
■ Fully rated protection
■ Fully rated, selectively coordinated protection

- Series rated protection

Fully Rated Protection: Where all overcurrent devices are rated for the full prospective short-circuit current at their line side terminals throughout the system.
Selectively Coordinated Protection: Is a fully rated system where the overcurrent device closest to the fault will open first, thus isolating the faulty circuit.

Series Rated Protection: A short-circuit interrupting rating assigned to a combination of two or more overcurrent protective devices that are connected in series and which the rating of the downstream device(s) in the combination is less than the series rating.
The short-circuit interrupting rating of the first device in the series must be equal to or greater than the available fault current. Downstream breakers, however, are not fully rated for the system's available fault current.
Series ratings are also known in the industry as integrated ratings, series combination ratings, and series connected ratings. The upstream overcurrent device in the series may be either internally or externally feeding downstream devices.

The latest revision of this document with up-to-date series ratings may be found at either of the following links:
■ www.eaton.com/panelboards (>Instructions)
■ www.eaton.com/switchboards (>Instructions)

UL Issues

In a series rated system, the overcurrent devices in series in the protective scheme must have been tested and listed by Underwriters Laboratories ${ }^{\circledR}\left(\right.$ UL $\left.^{\circledR}\right)$, for series combination use in the system.

All of Eaton's series ratings are in full compliance with all applicable requirements of the latest editions of UL 489, 891, and 67.
The UL Recognized Components Directory (the Yellow Book) contains breaker manufacturers' series connected listings. These are intended only as a guideline for use by others who are responsible for their own testing, labeling, and listing. Therefore, the UL Recognized Components Directory can not be used to interpret series-connected ratings in equipment.

Code Issues

Requirements of NFPA 70-the National Electrical Code for series ratings may be met by equipment marked with ratings adequate for the available fault current at the point of application in the electrical system. Eaton's panelboards and switchboards are marked consistent with NEC Article 240.86 for tested combinations.

NEC 240.86 Motor Contribution. Series ratings shall not be used where:

1. Motors are connected on the load side of the higherrated overcurrent device and on the line side of the lower-rated device.
2. The sum of the full-load currents exceeds 1% of the interrupting rating of the lower-rated breaker.
Note: NEC 240.86 is additive and both conditions must be met to apply.

Additionally, NEC Article 110.22 requires field marking on equipment where series ratings are used. This label is supplied with Eaton panelboards and switchboards using series combination ratings and reads "Caution-Series Combination System Rated \qquad Amperes Available. Identified Replacement Component Required."

Note to Installing Electrician: NEC 110.22 requires the installer to properly apply and complete this label. Label(s) must be placed on all equipment where series ratings are used.

Figure 1.
Conclusion: This conclusion is wrong when the downstream service has a blow-open contact assembly, as does a molded-case circuit breaker or similar device. It may be valid when the current-limiting fuse is sized to protect a passive bus bar system.
The up-over-down method ignores dynamic impedance (the inherent current-limiting of the downstream moldedcase circuit breaker). Such impedance is developed directly by the forces of the let-through current created when the contacts are blown open.

Some breakers rated 15 to 50 amperes, 120/240 volt maximum have been investigated and found suitable for use in panelboards from a different manufacturer. These are identified as "Classified" breakers. DO NOT USE SERIES RATINGS WITH "CLASSIFIED" BREAKERS! Series ratings apply ONLY to those Eaton breakers listed and published in this booklet.

Use of other devices can cause
explosion, severe injury, or death!

Applying Series Ratings

The following is provided to use the series rating tables on the following pages:

Step 1. Determine the available system voltage and fault current.

Step 2. Select the appropriate table using the system voltage.
Step 3. Use the appropriate "Series Equipment Rating" column equal to, or greater than, the available fault current, to determine the allowable UL recognized combinations of main (upstream) and branch (downstream) overcurrent devices. Main devices are shown in bold/shaded areas. Respective branch breakers are shown directly below their associated main device. If a rating is not initially found in a column, first look to the columns to the right for higher "Series Equipment Ratings" within the same table. If still not found, use ratings from table of a higher system voltage (higher numbered table).

Example 1:

208Y/120 volt, 3-phase, 4 -wire, AC system with available fault current of 26, 438 amperes. Main (upstream) device is a 3-pole, 225 ampere, EDS breaker. The branch (downstream) breakers are single- and 2-pole, 20, 30, and 60 amperes, 120 volt and 120/240 volt BAB breakers.

1. Go to the $120 / 240$ volts table (Table 1).
2. Look down under the 22 kA column. This rating is not shown.
3. Look to the columns to the right. This combination rating is shown under the 42 kA column, and therefore is valid.

Example 2:

480Y/277 volt, 3-phase, 4-wire, AC system with available fault current of 62, 097 amperes. Main (upstream) device is a 3-pole 250 ampere, HJD breaker. The branch (downstream) breakers are 2 - and 3 -pole, 60,70 , and 100 ampere EHD breakers.

1. Go to the $480 \mathrm{Y} / 277$ volts table (Table 4).
2. Look down under the 65 kA column. This rating is not shown.
3. Look to the columns to the right. This rating is not shown.
4. Look at the table with the next higher system voltage. (480 volts, Table 5).
5. This combination rating is shown under the 65 kA column, and therefore is valid.

Example 3:

480Y/277 volt, 3-phase, 4-wire, AC system with available fault current of 24,324 amperes. Main (upstream) device is a 3-pole, 225 ampere, FD breaker. The branch (downstream) breakers are single-pole, 20 ampere, GHO; 2-pole, 30 ampere, GHB; and 3 -pole, 50 ampere, GHB devices.

1. Go to the $480 \mathrm{Y} / 277$ volts table (Table 4).
2. Look under the 25 kA column. This rating is not shown. Look to the columns to the right. This rating is shown under the 35 kA column, and therefore is valid for combinations with the 2 - and 3 -pole GHB breakers.
3. Go to the 277 volts table (Table 3).
4. Look under the 25 kA column. This rating is not shown. Look to the columns to the right. This rating is shown under the 35 kA column, and therefore is valid for combinations with the single-pole GHO breaker.

Other Applications of Series Ratings

Series ratings can also be applied under the following guidelines:

- Any FULLY RATED breaker can be applied upstream, downstream, or in the middle of any of the series ratings stated in the tables
- Any series rating stated in the tables may have additional series rated branch breakers of the EXACT SAME TYPE further downstream in that rating
COMBINING SERIES RATINGS are allowed under certain conditions. Main and branch ratings may be combined if:
- Breakers A, B, and C are in series respectively from main to branch. Breakers A and B series rate together. Breakers A and C series rate at the same interrupting level (or higher). It is allowable to use A, B, and C together at the $A-B$ series rating

It is improper to combine series ratings under the following condition:

- Breakers A, B, and C are in series respectively from main to branch. Breakers A and B series rate together. Breakers B and C series rate at the Breaker B interrupting rating level. It is not allowable to use A, B, and C together at the $A-B$ series rating. However, combining multiple overcurrent devices as in this example, can be accomplished if all devices in the series combination have been tested together and listed in triple rating Table 13
Note: The information contained in this manual also applies to specifying the upstream overcurrent protective device for use with through-feed and sub-feed panelboards without an integral main.

Series Rating Tables

Table 1. 120/240 Volts AC—Breaker/Breaker Series Ratings
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below. For 240 Volts AC branch breakers, see Table 2.

Main	Series Equipment Rating-kA Symmetrical					
Breaker Maximum Amperes	18	22	42	65	100	200

(1) Where $\mathrm{x}=2$ or 3 .
(2) Single-pole version is restricted to 15-70 A.
(3) Where $y=1$ or 2.
(4) Not valid with CHKD or PDF3xM.

Table 1. 120/240 Volts AC—Breaker/Breaker Series Ratings (Continued)
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below. For 240 Volts AC branch breakers, see Table 2.

(2) Single-pole version is restricted to 15-70 A.
(3) Where $\mathrm{y}=1$ or 2.
(4) Not valid with CHKD or PDF3xM.

Table 1. 120/240 Volts AC—Breaker/Breaker Series Ratings (Continued)
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below. For 240 Volts AC branch breakers, see Table 2.

Main Breaker Maximum Amperes	$\mathbf{1 8}$	$\mathbf{2 2}$	$\mathbf{S 2}$	65	$\mathbf{1 0 0}$	200

[^0](2) Single-pole version is restricted to 15-70 A.
(3) Where $\mathrm{y}=1$ or 2.
(4) Not valid with CHKD or PDF3xM.

Table 2. 240 Volts AC-Breaker/Breaker Series Ratings
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below. For $120 / 240$ Volts AC branch breakers, see Table 1.

(1) Where $\mathrm{x}=2$ or 3 .
(2) Valid on 2-and 3-pole breakers only. Not valid for single-pole.
(3) Not valid with CHKD or PDF3xM.

Table 2. 240 Volts AC—Breaker/Breaker Series Ratings (Continued)
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below. For 120/240 Volts AC branch breakers, see Table 1.

[^1](3) Not valid with CHKD or PDF3xM.

Series Rating

Table 2. 240 Volts AC-Breaker/Breaker Series Ratings (Continued)
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below. For 120/240 Volts AC branch breakers, see Table 1.

[^2]Table 3. 277 Volts AC—Breaker/Breaker Series Ratings
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below
All ratings in this table apply to single-pole branch devices only. For 277/480 Volts AC branch breakers, see Table 4.

Main Breaker Maximum Amperes	Series Equipment Rating-kA Symmetrical						
	22	25	35	65	100		150
100							
125			EGS	EGH			
			$\begin{aligned} & \mathrm{GHO} \\ & \mathrm{GHB} \end{aligned}$	$\begin{array}{\|l} \text { GHB } \\ \text { GHO } \end{array}$			
225			$\begin{aligned} & \text { FD, FDE, } \\ & \text { PDG2xG (2) } \end{aligned}$	HFD, HFDE, PDG2xM ${ }^{2}$	FDC, FDCE, PDG2xP		
			$\begin{aligned} & \text { GHB } \\ & \text { GHQ } \\ & \text { GHQRSP } \\ & \text { GHBGFEP (3) } \end{aligned}$	GHB GHQ GHORSP GHBGFEP EHD FD (15-150 A) PDG2yF (15-100 A) (1) PDG2yG (15-150 A) (1)	GHB EHD FD ($15-150$ A) HFD (15-150 A) PDG2yF (15-100 A) (1) PDG2yG (15-150 A) (1) PDG2yM (15-150 A) (1)		
250	GHB		JD, JDB	HJD	LCL	JDC	
			$\begin{aligned} & \text { GHB } \\ & \text { GHBGFEP © } \end{aligned}$	$\begin{aligned} & \text { GHB } \\ & \text { GHBGFEP } \\ & \text { EHD } \\ & \text { FD (15-150 A) } \\ & \text { PDG2yF } \\ & (15-100 \text { A) } \\ & \text { PDG2yG } \\ & \left(15-150 \text { A) }{ }^{(1)}\right. \end{aligned}$	$\begin{aligned} & \text { GHBS } \\ & \text { CHQRSP } \end{aligned}$	GHB EHD FD (15-150 A) HFD (15-150 A) PDG2yF (15-100 A) (1) PDG2yG (15-150 A) (1) PDG2yM (15-150 A) (1)	
400	KD, KDB, CKD, PDG3xG ${ }^{2}$ PDF3xG ${ }^{\text {² }}$	KD, KDB, CKD, HKD, CHKD, PDG3xG ${ }^{2}$, PDG3xM $^{(2)}$, PDF3xG ${ }^{(2)}$, PDF3xM ${ }^{(2)}$	$\begin{aligned} & \hline \text { KD, KDB, CKD, } \\ & \text { PDG3xG ², } \\ & \text { PDF3xG ²) } \end{aligned}$	$\begin{aligned} & \hline \text { HKD, CHKD, } \\ & \text { PDG } 3 \times M{ }^{2} \text {, } \\ & \text { PDF3xM ²) } \end{aligned}$	$\begin{gathered} \text { KDC, } \\ \text { PDG3xP } \end{gathered}$		LCL
	GHB	GHB (5)	GHB EHD FD (15-150 A) PDG2yF $(15-100$ A) (1) PDG2yG $(15-150$ A) (1)	$\begin{aligned} & \text { GHB } \\ & \text { GHQ (15-20 A) } \\ & \text { EHD } \\ & \text { FD } \\ & (15-150 \mathrm{~A}) \\ & \text { PDG2yF } \\ & (15-100 \mathrm{~A}) \\ & \text { PDG2yG } \\ & (15-150 \mathrm{~A}) \end{aligned}$	GHB EHD FD (15-150 A) HFD (15-150 A) PDG2yF (15-100 A) (1) PDG2yG (15-150 A) (1) PDG2yM (15-150 A) (1)		GHB EHD FD (15-150 A) HFD (15-150 A) PDG2yF (15-100 A) (1) PDG2yG (15-150 A) (1) PDG2yM (15-150 A) (1)

(1) Where $\mathrm{y}=1$ or 2 .
(2) Where $\mathrm{x}=2$ or 3 .
(3) Not valid with FDE.
(4) Not valid with JDB.
(5) Valid on 2- and 3-pole breakers only. Not valid for single-pole.

Series Rating

Table 4. 277/480 Volts AC—Breaker/Breaker Series Ratings
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below. For 277 Volts AC branch breakers, see Table 3.

[^3]Table 5. 480 Volts AC—Breaker/Breaker Series Ratings
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below. All ratings in this table apply to 2 - and 3 -pole branch devices only. For 277/480 Volts AC branch breakers, see Table 4.

(1) Where $x=2$ or 3 .
(2) Not valid with FDCE.
${ }^{3}$ (3) Not valid with CHKD or PDF3xM.

Series Rating

Table 5. 480 Volts AC—Breaker/Breaker Series Ratings (Continued)
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below. All ratings in this table apply to 2 - and 3 -pole branch devices only. For 277/480 Volts AC branch breakers, see Table 4.

(1) Where $\mathrm{x}=2$ or 3 .
(2) Not valid with FDCE.
(3) Not valid with CHKD or PDF3xM.

Table 6. 600 Volts AC-Breaker/Breaker Series Ratings
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below.
All ratings in this table apply to 2- and 3-pole branch devices only.

Main Breaker Maximum Amperes	Series Equipment Rating-kA Symmetrical					
	18	25	35	42	50	100
150		FD, FDE, PDG2xG 11 FDB PDG2xF $(15-150 \mathrm{~A})(1)$				
225	\quad FD, FDE, PDG2xG ${ }^{1}$ FDB PDG2xF (15-150 A) (1)		FDC, PDG2xP (1) FDB FD, FDE HFD, HFDE PDG $2 \times F$ (15-150 A) (1) PDG2xG (1) PDG2xM (1)			
250	JD, JDB FDB PDG2xF $(15-100 \mathrm{~A})$	JD, JDB FDB PDG2xF $\left(15-100\right.$ A) ${ }^{(1)}$				LCL FDB FD, FDE HFD, HFDE FDC JD, JDB HJD PDG2xF © 1 (1) PDG2xG (1) PDG2xM (1) PDG2xP (1)

[^4]Table 6. 600 Volts AC—Breaker/Breaker Series Ratings (Continued)
Main devices shown in shaded area, centered at top. Respective branch devices shown directly below.
All ratings in this table apply to 2- and 3-pole branch devices only.

(1) Where $x=2$ or 3 .

Table 7. 120/240 Volts AC—Fuse/Breaker Series Ratings
Main fuse class shown in shaded area, centered at top. Respective branch devices shown directly below.

Main Fuse Maximum Amperes	Series Equipment Rating-kA Symmetrical	200
	100	

100						R
						$\begin{aligned} & \text { BAB } \\ & \text { HQP } \\ & \text { QBHW } \\ & \text { QPHW } \\ & \text { GB } \\ & \text { GHB } \end{aligned}$
200			R	J	T	
			$\begin{array}{\|l} \text { GB } \\ \text { GHB } \end{array}$	$\begin{aligned} & \text { BAB } \\ & \text { HQP } \\ & \text { QBHW } \\ & \text { QPHW } \end{aligned}$	$\begin{array}{\|l} \text { BAB } \\ \text { HQP } \\ \text { QBHW } \\ \text { QPHW } \end{array}$	
400	J	T		J	T	
	$\begin{aligned} & \text { BAB } \\ & \text { HOP } \\ & \text { QBHW } \\ & \text { QPHW } \end{aligned}$	$\begin{aligned} & \text { BAB } \\ & \text { HQP } \\ & \text { QBHW } \\ & \text { QPHW } \end{aligned}$		$\begin{aligned} & \text { GB } \\ & \text { GHB } \end{aligned}$	$\begin{array}{\|l} \text { GB } \\ \text { GHB } \end{array}$	

Table 8. 240 Volts AC—Fuse/Breaker Series Ratings
Main fuse class shown in shaded area, centered at top. Respective branch devices shown directly below. For 120/240 Volts AC branch breakers, see Table 7.

(1) Valid on 2- and 3-pole breakers only. Not valid for single-pole.
(2) Where $\mathrm{x}=2$ or 3 .

Table 9. 277 Volts AC—Fuse/Breaker Series Ratings
Main fuse class shown in shaded area, centered at top. Respective branch devices shown directly below.
All ratings in this table apply to single-pole branch breakers only. For 2- and 3-pole branch breakers, consult other tables.

[^5]
Series Rating

Table 10. 277/480 Volts AC—Fuse/Breaker Series Ratings
Main fuse class shown in shaded area, centered at top. Respective branch devices shown directly below.
All ratings in this table apply to 2- and 3-pole branch devices only. For single-pole, 277 Volts AC branch breakers, see Table 9.

[^6]Table 11. 480 Volts AC—Fuse/Breaker Series Ratings
Main fuse class shown in shaded area, centered at top. Respective branch devices shown directly below.
All ratings in this table apply to 2- and 3-pole branch breakers only. Not valid for single-pole branch breakers.

[^7]Table 12. 600 Volts AC-Fuse/Breaker Series Ratings
Main fuse class shown in shaded area, centered at top. Respective branch devices shown directly below. All ratings in this table apply to 2- and 3-pole branch devices only.

(1) Where $x=2$ or 3 .

Series Rating

Table 13. Triple Series Ratings

Main Fuse Class and Maximum Amperes	Tenant Main Type	Branch Type	System Voltage	Short-Circuit Series Rating (kA, Sym.)
L-6000	DK, KD, KDB	$\begin{aligned} & \text { EHD (1), PDG2xF } \\ & (15-100 \text { A) (2) } \end{aligned}$	240	100
L-6000	$\begin{aligned} & \text { DK, KD, KDB, } \\ & \text { PDD3xG (2), } \\ & \text { PDG3xG (2) } \end{aligned}$	GB, GHB	120/240	100
L-6000	$\begin{aligned} & \text { DK, KD, KDB, PDD3xG ②, } \\ & \text { PDG3xG ²) } \end{aligned}$	FD (1), FDE (1), FDB (1), PDG2xF (15-100 A) (2), PDG2xG (15-150 A) (2)	240	100
L-6000	$\begin{aligned} & \text { DK, KD, KDB, PDD3xG ², } \\ & \text { PDG3xG ² } \end{aligned}$	JD, JDB	240	100
L-6000	JD, JDB	GB, GHB	240	100
L-6000	JD, JDB	GB, GHB	120/240	100
L-6000	FD (15-150 A)	GB, GHB	240	100
L-6000	$\begin{aligned} & \text { FD (15-150 A), } \\ & \text { PDG2xG (15-150 A) (2) } \end{aligned}$	GB, GHB	120/240	100
L-6000	FD (15-150 A)	BAB-H, HQP-H, QBHW-H, OPHW-H	240	100
L-6000	FDB	BAB-H, HQP-H	240	100
L-6000	$\begin{aligned} & \text { FD (15-150 A), } \\ & \text { PDG2xG (15-150 A) (2) } \end{aligned}$	BAB (3), HOP (3) QBHW (${ }^{3}$, QPHW (3)	120/240	100
L-6000	FDB, PDG2xF (15-100 A) (2)	BAB (3) HQP (3)	120/240	100
L-6000	EHD	BAB-H, HQP-H	240	100
L-6000	EHD, PDG2xF (15-100 A) ${ }^{2}$)	BAB, HQP (3)	120/240	100

(1) Valid on 2- and 3-pole breakers only. Not valid for single-pole.
(2) Where $\mathrm{x}=2$ or 3 .
(3) 1-pole restricted to $15-70 \mathrm{~A}$.

© 2019 Eaton

All Rights Reserved

[^0]: (1) Where $x=2$ or 3 .

[^1]: (1) Where $\mathrm{x}=2$ or 3 .
 (2) Valid on 2-and 3-pole breakers only. Not valid for single-pole.

[^2]: (1) Where $x=2$ or 3 .
 (2) Valid on 2-and 3-pole breakers only. Not valid for single-pole.
 (3) Not valid with CHKD or PDF3xM.

[^3]: (1) Where $\mathrm{y}=1$ or 2 .
 (2) Where $\mathrm{x}=2$ or 3 .

[^4]: (1) Where $\mathrm{x}=2$ or 3 .

[^5]: (1) Where $\mathrm{x}=2$ or 3 .

[^6]: (1) Where $x=2$ or 3 .

[^7]: (1) Where $\mathrm{x}=2$ or 3 .

