

EZ221-CO CANopen Slave Interface User Manual

May 2005

Warning! Dangerous electrical voltage!

Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- · Short circuit to earth.
- Cover or enclose neighboring units that are live.
- Follow the engineering instructions (AWA) of the device concerned.
- Only suitably qualified personnel in accordance with EN 50110-1/-2 (VDE 0105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE) must be connected to the protective earth (PE) or to the potential equalization. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive

interference does not impair the automation functions.

- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.
- Suitable safety hardware and software measures should be implemented for the I/O interface so that a line or wire breakage on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the low voltage for the 24 volt supply. Only use power supply units complying with IEC 60364-4-41 (VDE 0100 Part 410) or HD 384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60204-1 must be effective in all operating modes of the automation devices.Unlatching the emergency-stop devices must not cause restart.

- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.
- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergency-stop devices should be implemented.
- Wherever faults in the automation system may cause damage to persons or property, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).

Contents

	About This Manual	7
	Target group	7
	Further manuals for this device	7
	References	8
	Data types	8
	Device designation	9
	Abbreviations and symbols	11
	Writing conventions	12
1	The EZ221-CO	13
	System overview	14
	Setup of the unit	15
	Device function description	16
	– EZ700/800, EZD-CP8	16
	– EZ800/EZD-CP8	17
	Improper use	17
2	Installation	19
2	Connecting the EZ221-CO to the basic unit	19
	Connecting the power supply	20
	Connecting CANopen	21
	 Pin assignment of the CANopen 	21
	 Bus terminating resistors 	22
	EMC compliant wiring	22
	Electrical isolation	23
	Transfer rates – automatic baud rate recognition	24
3	During Operation	25
ა	Device Operation	25 25
	Initial power up	25 26
	Setting the CANopen slave address	26 26
	- Setting the address on the basic unit with display	
	 Setting the address by means of EZSoft Setting the address via special configuration tools 	28
	 Setting the address via special configuration tools 	28

	Status LEDs – Error LED – RUN LED – Timing diagram of the ERR and RUN LEDs Cycle time of the EZ basic unit EDS file	28 29 30 30 31 31
4	CANopen Services	33
	Communication objects	33
	 Service data objects 	33
	 Process data objects 	34
	 PDO mapping 	36
	System services	37
	 Synchronization object 	37
	 Time Stamp object 	37
	 Emergency object 	37
	Network management	38
	– Initialization	39
	- Pre-operational	39
	- Operational	39
	- Prepared	40 42
	 Node monitoring Further services 	42 43
	 Saving and restoring entries 	43 43
	 Saving and restoring entries Layer Setting Service 	43
	Device profile	44
5	Object Dictionary	45
	Communication parameters	45
	Manufacturer-specific objects	54
	Error messages (Emergency)	55
	 Third data byte: coupling module status 	57
6	CANopen Protocols	59
	PDO protocol	59
	SDO protocol	60
	- General overview	60
	 SDO protocol for EZ/EZD 	64

	CANopen network	66
	 Example of EZ800: Read time (8 bytes) 	67
	Emergency protocol	71
7	PDO – Direct Data Exchange with EZ/EZD	73
	Output data (2011 _{hex}): operating mode, R1 – R16	74
	Input data (2012 _{hex}): operating mode, S1 – S8	77
8	CDO Control Commanda far E7700	81
ð	SDO – Control Commands for EZ700 Read/write date and time	82
		82 86
	Reading image data	
	 General notes on working with image data 	86 87
	Read/write image data – Overview	87
	 Analog value comparators/threshold comparator 	
	Analog value comparators/timeshold comparator A1 – A16	.s. 88
	– Counters: C1 – C16	89
	– Text function blocks: D1 – D16	90
	- Local inputs: I1 $-$ I16	91
	 Local analog inputs: IA1 – IA4 	92
	– Write markers: M1 – M16/N1 – N16	94
	 Read markers: M1 – M16/N1 – N16 	96
	 Operating hours counters: O1 – O4 	98
	– Local P buttons: P1 – P4	99
	 Local outputs: Q1 – Q8 	101
	 Inputs/outputs of EZ-LINK: R1 – R16/S1 – S8 	102
	 Timing relays: T1 – T16 	104
	 Year time switch: Y1 – Y8 	105
	– Master reset: Z1 – Z3	106
	– 7-day time switch: 🖣1 – 🖣8	107
	Read/write function block data	108
	 General notes 	108
	– Overview	108
	 Analog value comparator/threshold comparator: 	
	A1 – A16	109
	 Counter relays: C1 – C16 	112
	 Operating hours counters: O1 – O4 	115
	 Timing relays: T1 – T16 	117
	 Year time switch: Y1 – Y8 	120

	– 7-day time switch: @1 – @8	123
	Analysis – error codes via EZ-LINK	126
9	SDO – Control Commands for EZ800/EZD	127
,	Read/write date and time	128
	– Winter/summer time, DST	120
	Read/write image data	133
	– Overview	133
	 Local analog inputs: IA1 – IA4 	134
	– Local diagnostics: ID1 – ID16	136
	- Local inputs: IW0	138
	– Inputs of the stations: IW1 to IW8	140
	– Markers: M.	141
	– Local P buttons: P1 – P4	144
	 Local analog output: QA1 	146
	- Local outputs: QW0/	
	outputs of the stations QW1 – QW8	147
	 Inputs/outputs of EZ-LINK: RW/SW 	149
	 Receive Data Network: RN1 – RN32/ 	
	Transmit Data Network: SN1 – SN32	151
	Read/write function block data	153
	 General notes 	153
	- Overview	154
	 Analog value comparators: A01 – A32 	155
	 Arithmetic function block: AR01 – AR32 	157
	 Block compare: BC01 – BC32 	159
	 Block transfer: BT01 – BT32 	161
	 Boolean operation: BV01 – BV32 	163
	– Counters: C01 – C32	165
	 Frequency counters: CF01 – CF04 	167
	 High-speed counters: CH01 – CH04 	169
	 Incremental counters: CI01 – CI02 	171
	 Comparators: CP01 – CP32 	173
	 Text output function blocks: D01 – D32 	175
	 Data function blocks: DB01 – DB32 	178
	 PID controllers: DC01 – DC32 	180
	 Signal smoothing filters: FT01 – FT32 	183
	 Receive network data: GT01 – GT32 	185
	 7-day time switches: HW01 – HW32 	187
	 Year time switches: HY01 – HY32 	190

 Value scaling: LS01 – LS32 Master reset: MR01 – MR32 Numerical converters: NC01 – NC32 Operating hours counters: OT01 – OT04 Transmit network data: PT01 – PT32 Pulse width modulation: PW01 – PW02 Synchronize clock: SC01 Set cycle time: ST01 Timing relays: T01 – T32 Value limitation: VC01 – VC32 Analysis – error codes via EZ-LINK 	193 195 197 201 203 205 206 208 211 213
Appendix	215
What happens if?	215
– RUN LED	215
– Error LED	216
Technical Data	217
Dimensions	220
Glossary	221
Index	233

About This Manual

Target group	This manual has been produced for automation technicians and engineers. A thorough knowledge of the CANopen fieldbus and the programming of a CANopen master is required. You should also be familiar with the operation of the EZ control relay or the EZD multi-function display.
Further manuals for this device	 The following operating manuals should be followed: EZ500/700 Series (MN05013003E) EZ800 Series (MN05013004E) EZD Series (MN05013005E) All manuals are available on the Internet for download as PDF files. For a fast search enter the documentation number as the search criterion at www.EatonElectrical.com.

References	[1] CANopen – Application L CiA DS 301	ayer and Comm	unication Profile
	[2] CANopen – Cabling and CiA DR 303-1	Connector Pin A	ssignment
	[3] CANopen – Indicator Spe CiA DR 303-3	cification	
	[4] CANopen – Layer Setting CiA DSP 305	Services and P	rotocol (LSS)
	References are available on	the Internet at w	ww.can-cia.org.
Data types	The CANopen specifies its o document [1] for details. The table are used for the CANop EZ221-CO.	data types listed	I in the following
Name	Description	Range	
		Minimum	Maximum
UNSIGNED8	8-bit unsigned integer (b7 to b0)	0	255
UNSIGNED16	16-bit unsigned integer (b15 to b0)	0	65535
UNSIGNED32	32-bit unsigned integer (b31 to b0)	0	4294967295
VISIBLE_STRINGlen	Character string of the length len. The character string does not have to be	All ASCII chara to 7E _{hex} and 0	acters from 20 _{hex} _{hex} are

permissible

delimited with 0_{hex}!

User-specific data format

DOMAIN

Device designation	This manual uses the following short names for equipment types, as far as the description applies to all of these types:
	• EZ512, EZ7
	Type designation of the control relay, the point represents a placeholder for all characters used
	 EZ500 for EZ512-AB EZ512-AC
	- EZ521-DA - EZ512-DC
	 EZ700 for EZ719-AB EZ719-AC EZ719-DA EZ719-DC EZ721-DC
	 EZ800 for EZ819 EZ820 EZ821 EZ822
	 EZD-CP8 for EZD-CP8-ME EZD-CP8-NT

- EZ-AB for
 - EZ512-AB...
 - EZ719-AB...
- EZ-AC for
 - EZ512-AC-..
 - EZ719-AC
 - EZ8..-AC-...
- EZ-DC for
 - EZ512-DC-..
 - EZ719-DC-..
 - EZ8..-.DC-...
- EZ-DA for
 - EZ512-DA...
 - EZ719-DA...

B		
	CD	Binary Coded Decimal code
C	AL	CAN Application Layer
C	AN	Controller Area Network
C	OB	Communication Object
C	OB ID	Communication Object Identifier
C	OV	Change of Value
D	EC	Decimal (number system with base 10)
E	DS	Electronic Data Sheets
E	MCY	Emergency Object
H	IEX	Hexadecimal (number system with base 16)
IC)	Identifier
L	SS	Layer Setting Service
N	IMT	Network Management
N	IVM	Non-Volatile Memory
N	IVM-PA	Non-Volatile Memory Parameter (load and save area)
Ν	IVM-RO	Non-Volatile Memory-Read Only (read-only memory area)
P	C	Personal Computer
P	DO	Process Data Object
rc)	Read Only (read access only)
R	NOM	Read Only Memory
R	TR	Remote Transmit Request
rv	N	Read/Write (read/write access)
S	ELV	Safety Extra Low Voltage
S	DO	Service Data Object
F	S	Factory Setting

Writing conventions

Except for the first page of chapters and empty pages at the end, the top left of the page shows the chapter title and the top right of the page shows the current section for greater clarity.

▶ indicates actions to be taken.

Attention!

Warns of a hazardous situation that could result in damage to the product or components.

Caution!

Warns of the possibility of serious damage and slight injury.

Warning

Warns of the possibility of a hazardous situation that could result in major damage and serious or fatal injury or even death.

Indicates interesting tips and additional information

1 The EZ221-CO

The EZ221-CO communication module was developed for automation tasks that use the CANopen fieldbus. The EZ221-CO is a gateway and can only be used in conjunction with the EZ700, EZ800 or EZD basic units. The system unit, consisting of the EZ/EZD control unit and the CANopen gateway functions in the fieldbus system exclusively as a slave station. System overview

The EZ CANopen slaves are integrated into a CANopen.

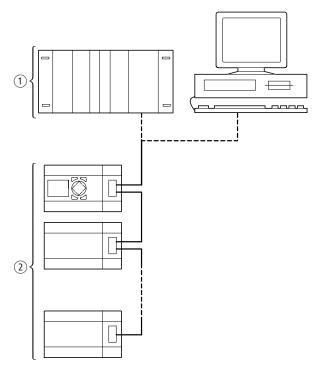
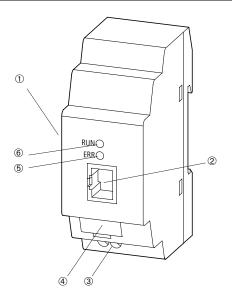
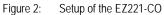




Figure 1: Integration of EZ221-CO in the CANopen network

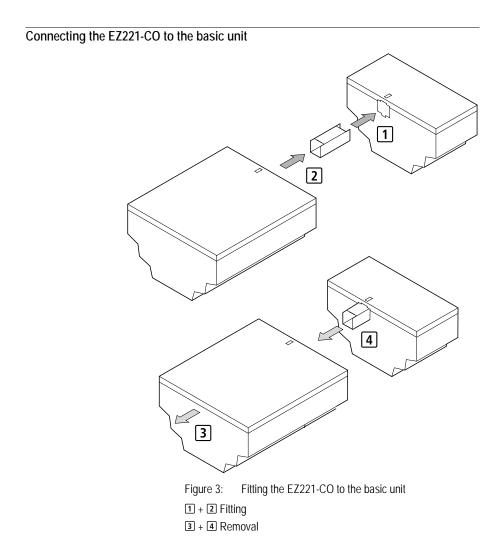
- ① Master area, PLC or PC with CAN card
- ② Slave area, e.g.: EZ control relay with CANopen gateway

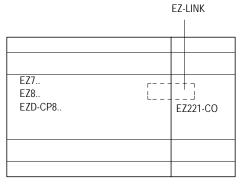
Setup of the unit

- ① EZ-LINK socket
- 2 CANopen terminal, 8-pin RJ45 socket
- ③ Power supply 24 V H
- ④ Device designation plate
- ⑤ ERR LED (Error)
- 6 RUN LED

Device function description	The EZ221-CO module allows the EZ and EZD series devices to be connected to a CANopen communication network. The following data can be transferred by selecting the appropriate SDO/PDO:
	EZ700/800, EZD-CP8
	 S1 to S8 Output data of the basic unit, RUN/STOP (read, as viewed from CANopen master) R1 to R16 Input data of the basic unit, RUN/STOP (write, as viewed from CANopen master) All function relay data (read, as viewed from the CANopen master) Timing relays Counter relays Analog comparators Weekday, time, summer/winter time (DST) The setpoints of the function relays Counter relays Counter relays The setpoints of the function relays (write, as viewed from CANopen master) Timing relays Counter relays Timing relays Counter relays Timing relays Counter relays Time switches Analog comparators Weekday, time, summer/winter time (DST)

EZ800/EZD-CP8 ..

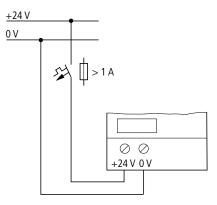

- · All markers and EZ-NET data
- Function blocks (read/write, as viewed from the master)
 - Arithmetic function blocks
 - Frequency counters, high-speed counters, incremental encoder counters
 - 7-day and year time switch
 - Operating hours counters
 - PID controllers
 - PWM (pulse width modulation)
 - Real-time clock


Improper use EZ may not be used to replace safety-relevant control circuits, e.g.:

- · Burner,
- · Emergency-stop,
- Crane or
- · Two-hand safety controls.

2 Installation

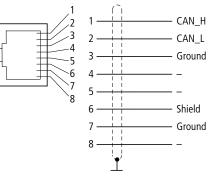
The same principles apply as for EZ700, EZ800 and EZD basic units with expansion devices.


Connecting the power supply

The EZ221-CO device is run on a 24 V DC power supply (→ Technical data under "Power supply", page 219).

Warning

Always ensure electrical safety isolation between the extra low voltage (SELV) and the 24 V power supply.



Connecting CANopen The cable types, coupling connectors and terminating resistors to be used are specified in ISO 11898.

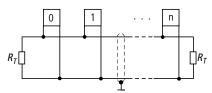
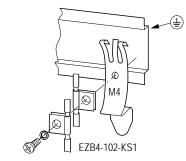
A shielded 8-pin RJ45 plug is used to connect the EZ221-CO. The pin assignment of the plug is specified below in accordance with CiA DR-303-1.

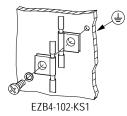
Pin assignment of the CANopen

Pin	Signal	Description
1	CAN_H	CAN bus signal (dominant high)
2	CAN_L	CAN bus signal (dominant low)
3, 7	CAN_GND	CAN ground
6	CAN_SHILD	Optional shielding
4, 5, 8	-	n.c.

Bus terminating resistors

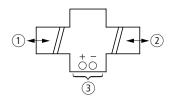
The first and last node of a CANopen network must be terminated by means of a 120 Ω bus terminating resistor. This is interconnected between the CAN_H and CAN_L terminals.


Figure 7: Terminating resistors R_T : CAN_H and CAN_L terminals R_T = 120 Ω

EMC compliant wiring Electromagnetic interference may lead to unwanted effects on the communication fieldbus. Such effects can be significantly reduced by using the cable described above, a shielded RJ45 connector and by terminating the shield.

The two figures below show the correct termination of the shielding.



Electrical isolation

The following potential isolation must be provided for the interfaces of the EZ221-CO:

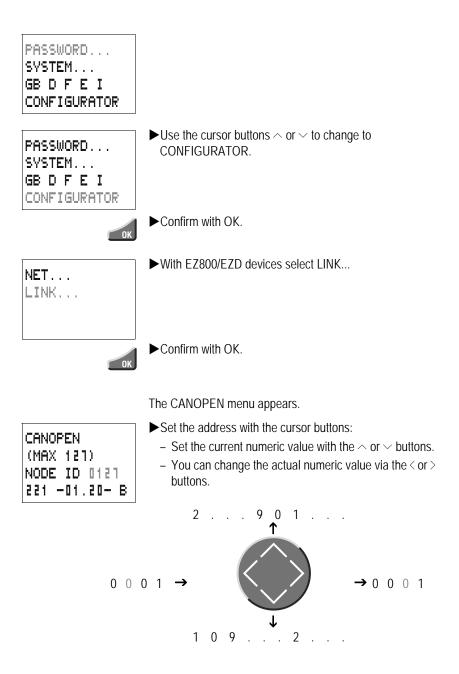
- Figure 10: Potential isolation between the power supply and outputs
- 1 Safe electrical isolation between EZ-LINK and 240 V AC
- 2 Basic electrical isolation to the CANopen communication bus
- ③ Power supply 24 V DC

Transfer rates – automatic baud rate recognition	detects the d However, this valid telegrar	ata transfer rate of s requires that at le	21-CO module automatically the communication network. ast one station is transmitting The fast flashing Error and dicate this status.
	the used and device transr	thus set baud rate nits a BootUp mes	age frame has been received, is considered correct and the sage frame. The RUN LED D will be switched off.
	CiA. The tabl	e below provides a	ta transfer rates specified by an overview of recommended ng maximum cable lengths.
	Bit rate	Max. cable length	Recommended conductor cross-section
		longui	0033 300001
	kbps	m	mm ²
	kbps 10	•	
		m	mm ²
	10	m 5000	mm ² > 0.8
	10 20	m 5000 2500	mm ² > 0.8 > 0.8
	10 20 50	m 5000 2500 1000	mm ² > 0.8 > 0.8 0.75 to 0.8
	10 20 50 100	m 5000 2500 1000 650	mm ² > 0.8 > 0.8 0.75 to 0.8 0.34 to 0.6
	10 20 50 100 125	m 5000 2500 1000 650 500	mm ² > 0.8 > 0.8 0.75 to 0.8 0.34 to 0.6 0.34 to 0.6
	10 20 50 100 125 250	m 5000 2500 1000 650 500 250	mm ² > 0.8 > 0.8 0.75 to 0.8 0.34 to 0.6 0.34 to 0.6 0.34 to 0.6

3 Device Operation

Initial power up

- Before you switch on the device, verify that it is properly connected to the power supply, to the bus connector and to the basic unit.
- Switch on the power supply to the basic unit and the EZ221-CO.

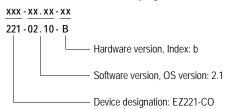

The LEDs of the EZ221-CO will flicker. The device is in the mode for determining the correct baud rate (\rightarrow section "Transfer rates – automatic baud rate recognition" on page 24). The GW message (intelligent station connected) must be displayed on the basic unit.

Basic unit	GW display
EZ700	Flashing
EZ800	Flashing
EZD-CP8	Flashing

As soon as the device is switched to Operational status, the GW message is static in the display, even on the devices with a flashing GW, \rightarrow section "Network management" on page 38).

If the EZ221-CO has its default settings (node ID = 127), you need to define the CANopen slave address.

Setting the CANopen slave address	Each CANopen slave must be assigned a unique address (node ID) within the CANopen structure. You can assign a maximum of 127 addresses (1 to 127) within a CANopen structure. All node IDs must be unique within the entire bus structure.
	There are three ways to set the CANopen address of an EZ221-CO:
	 Using the integrated display and keypad on the EZ or EZD basic unit; address range: 1 to 127 Using EZSoft on the PC Via the configuration software of the master PLC used (possibly by means of an explicit message).
	Setting the address on the basic unit with display
	Requirements:
	 The appropriate basic unit (EZ700, EZ800 or EZD) and EZ221-CO must be fed with power.
	 The basic unit must have been unlocked (no password activated).
	 The basic unit must have a valid operating system version. The basic unit must be in STOP mode.
DEL + ALT	Press the DEL + ALT buttons to change to the special menu.



► Press OK to accept the address.

► Press ESC to cancel address entry.

Information on the 4th display line:

Setting the address by means of EZSoft

 $\label{eq:communication} \overset{}{\rightarrow} \text{Configuration} \overset{}{\rightarrow} \text{Expansion}$ Devices $\overset{}{\rightarrow} \text{EZ221-CO}_{\text{-}}$.

The menu is only available in Communication View, therefore activate the Communication tab.

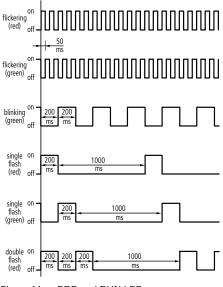
EZ221-CO devices accept the address automatically.

Setting the address via special configuration tools

A further option of setting or modifying the node ID of the gateway is provided by special configuration tools, which can be used for general configuration of the CANopen network. The gateway supports the LSS (Layer Setting Services) service accordingly.

Status LEDs

The EZ221-CO expansion unit is equipped with two LEDs: one green RUN LED and one red ERR LED. These indicate the current module status and allow quick error analysis.


No.	Error LED	Status	Description
1	OFF	No error	The EZ221-CO is operating error-free. If the RUN LED is also off, the EZ221-CO is either switched off or is currently being reset.
2	Single flash	Alarm limit reached	At least one of the error counters of the CANopen Controller has either reached or exceeded the Warning Limit. Too many errors have occurred on the CANopen bus.
3	Flickering	AutoBaud/LSS	Auto baud rate detection is currently busy (flickers in alternation with the RUN LED).
4	Flashes twice	Error control event	A protective Guard Event or a Heartbeat Event has occurred.
5	ON	Bus-off	The CANopen controller has changed to BUS-OFF status.

Error LED

No.	RUN LED	Status	Description
1	OFF	Reset	The EZ221-CO is either switched off or is currently being reset.
2	Flickering	AutoBaud	Auto baud recognition is currently busy (LED flickers, in alternation with the ERR LED).
3	Single flash	STOPPED ¹⁾	The device is in STOPPED state.
4	Flashing	PRE- OPERATIONAL ¹⁾	The device is in PRE-OPERATIONAL status.
5	ON	OPERATIONAL ¹⁾	The device is in OPERATIONAL status.

RUN LED

1) Detailed information on the various states is provided in section "Network management", page 38.

Timing diagram of the ERR and RUN LEDs

Figure 11: ERR and RUN LED

Cycle time of the EZ basic unit	Communication between the basic unit and the EZ221-CO via EZ-LINK increases the cycle time of the basic unit. The worst case value is 25 ms.		
	Please take this factor into account when calculating response times of the basic unit.		
EDS file	You can implement the EZ221-CO into the CANopen structure by means of a standardized EDS file (Electronic Data Sheet). The EDS defines the CANopen functions in machine code. It lists all objects, supported data transfer rates, the manufacturer and many other data.		
	The file "EZ221CO.eds" can be obtained at <u>www.EatonElectrical.com</u> . The file is also available on the EZSoft CD ROM.		

4 CANopen Services

	The functions for controlling the EZ221-CO on the CANopen bus are defined by the CANopen services.
Communication objects	The EZ221-CO supports service data objects (SDOs) and process data objects (PDOs) of the CANopen Predefined Connection Set.
	Service data objects
	Service data objects (SDO – Service Data Object) are used for read/write access to the entries of the object dictionary.
	Server SDO The system supports the first server SDO, which allows read/ write access to the local object dictionary.
	The EZ221-CO supports expedited transfer (of up to four data bytes) and segmented transfer (for more than four data bytes).
\rightarrow	Block transfer is not supported!
	More detailed information on the sequence is provided in section "PDO protocol", page 59.
	Client SDO Client SDOs provide remote read/write access to the object dictionaries of CANopen devices on the network.
\rightarrow	The EZ221-CO does not support client SDOs.

Process data objects

Process data is exchanged in the CANopen by means of PDOs (= Process Data Object). More detailed information on the sequence is provided in section "Manufacturer-specific objects", page 54.

The table below lists the process data and the corresponding PDOs.

PDO	Process data	Length
Receive PDO	Command or identification for the image data R16 to R1 of EZ/EZD basic unit (output data to EZ)	3 bytes
Transmit PDO	Command or status for the image data S8 to S1 of EZ/EZD basic unit (input data from EZ)	3 bytes

For details on the structure of process data refer to section "Manufacturer-specific objects", page 54.

Receive PDO

The EZ221-CO receives data from the CANopen network (PDO consumer) by means of receive PDOs and writes this data via EZ-LINK to the EZ/EZD basic unit as a command or identifier for the image data R16 to R1.

Transmit PDOs

In the opposite direction, the commands or status of the S8 to S1 image data of EZ/EZD are read via EZ-LINK and transmitted to the CANopen network as transmit PDOs of the EZ221-CO (PDO producer).

PDO mapping

The EZ221-CO supports **static PDO mapping**. The process data is here permanently assigned to the specific PDOs, with a granularity of 1 byte. The PDO mapping is permanently stored and cannot be modified by the user.

Transmission types of PDOs

Receive PDO: The default transmission type setting for receive PDOs is "asynchronous" (Value: 255_{dec} = FF_{hex}).

Transmit PDO: The default transmission type setting for transmit PDOs is "asynchronous" (Value: 255_{dec} = FF_{hex}).

Inhibit Time

The Inhibit Time is evaluated only for transmit PDOs. This time represents the data transfer inhibit time between two transmit PDOs, specified in steps of 100 μ s. The passed value is rounded to the next lower millisecond. Values lower than 1 ms are stored as "0". In this case the module transfers the PDOs at maximum speed.

An Inhibit Time is not set by default, since data transferred via the EZ-LINK protocol is updated only at 180 ms intervals. However, the user can set an Inhibit Time definition for the transmit PDO as required.

Event Timed PDOs

The expiration of a counter can be considered as an event which triggers the transmission of a PDO. The EZ221-CO does not support Event Timed PDOs by default, however the user can enable this function for transmit PDOs as required.

Multiplexed PDOs

In addition to elementary process data, the multiplexed PDOs also contain address information consisting of an index and a subindex used for writing the PDO to a specific address in the object dictionary of the consumer device.

The EZ221-CO does not support multiplexed PDOs.

PDO mapping

Process data is mapped to a receive and transmit PDO as follows.

Receive PDO 1:

The table below shows the mapping of the first receive PDO.

Data byte	Contents	Description
Data byte 1	Cyclic command and identifier	Write input data of the EZ/EZD basic
Data byte 2	Image data R16 to R9	unit (from the point of view of the master)
Data byte 3	Image data R8 to R1	(index 2011, subindex 00 _{hex})
Data bytes 4 to 8	Not transferred	

For details on the composition of the process data refer to section "Output data (2011_{hex}): operating mode, R1 – R16", page 74.

Receive PDO 2 to 4:

These receive PDOs of the Predefined Connection Set are not supported.

Transmit PDO 1:

The table below shows the mapping of the first transmit PDO.

Data byte	Contents	Description
Data byte 1	Cyclic command and status	Read output data of the EZ/EZD basic
Data byte 2	Image data S8 to S1	unit (from the point of view of the master)
Data byte 3	empty (00 _{hex})	(index 2012 _{hex} , subindex 00 _{hex})
Data byte 4 to 8	Not transferred	

For details on the composition of the process data refer to section "Input data (2012_{hex}) : operating mode, S1 – S8", page 77.

System services

Transmit PDO 2 to 4: These transmit PDOs of the Predefined Connection Set are not supported.

Synchronization object

The EZ221-CO as consumer supports the synchronization object (index: 1005_{hex}) in order to enable the synchronous transfer of PDOs.

Time Stamp object

A time producer uses the time stamp object (Index: 1012_{hex}) to provide a common time reference to all system nodes. The EZ221-CO does not support the Time Stamp object.

Emergency object

The EZ221-CO supports the emergency object (index: 1014_{hex}) in order to report device errors to the network. The content of this emergency message is determined by the error event. Errors detected are described under section "Error messages (Emergency)", page 55.

Network management

A CANopen network contains only one NMT master (NMT = Network Management), while all other devices are NMT slaves. The NMT master has full control over all units and can thus change their status.

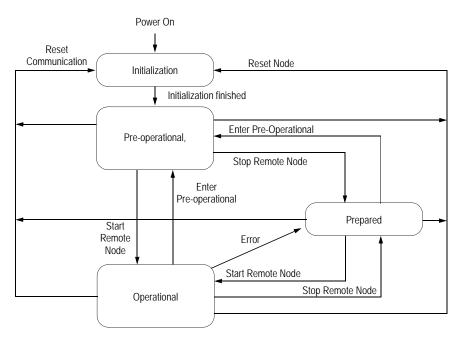


Figure 12: Network management

CANopen distinguishes between the following states:

- · Initialization,
- · Pre-operational,
- · Operational and
- Prepared

Initialization

This is the status of a node after power on. Auto baud recognition, initialization of device applications and communication take place within this phase. The node automatically enters the next state, namely the Pre-operational state.

Pre-operational

In this mode it is possible to communicate with the node via SDOs (e.g setting the Guard Time, Lifetime Factor). The node is not able to execute PDO communication and does not transmit any emergency messages.

The RUN LED of the EZ221-CO flashes to indicate this state.

The state is indicated also on the basic unit with the flashing GW message in the EZ display. The diagnostics input 114 (on the basic unit) is set until GW is no longer flashing in the EZ display. This is achieved by setting the CAN node to Operational mode.

Operational

In this state, the CANopen node is fully ready for operation and can automatically transmit messages (PDOs, Emergency).

The RUN LED of the EZ221-CO is static to indicate this state.

The status is indicated also on the basic unit by the static display of the GW status message. The diagnostics input I14 (on the basic unit) is set to zero.

Prepared

In this state, the node connection is switched completely to bus-off state; neither SDO nor PDO communication are possible. The network status of a node can be changed only by means of an appropriate network command (e.g. the Start Remote Node service).

A Boot-Up message will be transmitted after power on of a device in order to indicate its ready state. This message frame uses the identifier of the NMT error control protocol and is permanently assigned to the set device address (1792_{dec} + device address).

For information on the PDO and SDO transfer refer also to section "PDO protocol", on page 59.

Process data exchange by means of PDOs is enabled by setting the module to OPERATIONAL state via the Start Remote Node service. TxPDOs configured with transmission types 254 or 255 will be transmitted at each transition to OPERATIONAL state, irrespective of any changes in input data.

The module enters the PREPARED state after an error has occurred. Communication via SDOs and PDOs is then no longer possible and the module only responds to the NMT services:

- Start Remote Node, transition to OPERATIONAL state; making it possible to transfer data via SDOs and PDOs.
- Enter Pre-operational, transition to PRE-OPERATIONAL state; it is possible to transfer data via SDOs.
- · Reset Node and
- Reset Communication, transition to INITIALIZATION state, i.e. the last settings will be loaded from memory, or the factory settings if nothing has been saved previously. The module then enters PRE-OPERATIONAL state.

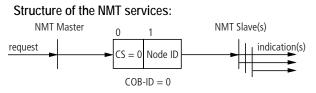


Figure 13: Structure of the NMT services, Start Remote Node Node ID = 0: Sets all existing nodes to OPERATIONAL state.

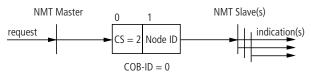


Figure 14: Structure of the NMT services, Stop Remote Node Node ID = 0: Sets all existing nodes to PREPARED state.

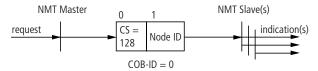


Figure 15: Structure of NMT services, PRE-OPERATIONAL state Node ID = 0: Sets all existing nodes to PRE-OPERATIONAL state.

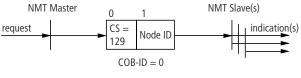
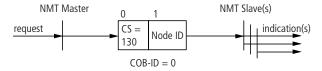
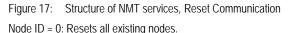




Figure 16: Structure of NMT services, Reset Node Node ID = 0: Resets all existing nodes.

Node monitoring

A CANopen node must be checked in particular if it does not continuously transmit messages (cyclic PDOs). Two methods can be used alternatively to monitor CANopen nodes.

EZ221-CO supports Node Guarding and Heartbeat Producer modes for node monitoring.

Node Guarding

The NMT master polls all NMT slaves at specified intervals (Node Guard Time) by means of a node-specific Remote Transmission Request message frame (RTR). The NMT slave responds to this request by transmitting its communication status. The NMT master reports a Node Guarding Event to its application if a node fails to respond to the RTR within the specific Node Life Time.

Failure of Node Guarding

Error events triggered after the Life Time has expired and a Node Guard frame has not been received from the EZ221-CO will be treated as communication error.

The R data for the EZ basic unit will be set to zero in this case. The ERR LED flashes twice to indicate Guarding failure.

When the Node Guarding protocol is resumed, the ERR LED will be switched off immediately and the outputs of the EZ basic unit can now receive PDO data again.

Heartbeat Producer

The EZ221-CO broadcasts a cyclic heartbeat frame to signal its communication status. If a responsible heartbeat consumer does not receive this heartbeat frame within the Heartbeat Consuming Time, its application will report a heartbeat error. The second parameter relevant to the heartbeat protocol is the Heartbeat Producer Time, which can be set in the EZ221-CO gateway. This time determines the interval between the transfer of two heartbeat frames by the node.

When the Heartbeat Producer Time is set to a value unequal to zero on the EZ221-CO node, the first heartbeat frame will be transmitted during the transition from the Initialization to the Pre-operational state. Concurrent use of both node monitoring methods is not allowed. The heartbeat protocol is used when the Heartbeat Producer Time is unequal to zero.

 \rightarrow

The EZ221-CO does not support the Heartbeat Consumer mode for receiving heartbeat frames of other CANopen devices.

Further services	Saving and restoring entries
	The EZ221-CO supports the saving and restoring of the object dictionary entries 1000 _{hex} to 1FFF _{hex} in the non-volatile memory (EEPROM or FRAM). In the object dictionary tables, this area is named NVM-PA, while manufacturer-specific entries are stored in the NVM-RO area.
	Parameters are saved via the object 1010 _{hex} (SAVE signature); this always includes all parameters.
	The factory settings (FS) in the area 1000_{hex} to $1FFF_{hex}$ can be restored with the object 1011_{hex} (LOAD signature). This routine always restores all factory settings.

Layer Setting Service

The Layer Setting Service is used to configure the node ID via the CANopen network. The EZ221-CO supports this service for both of the specified slave modes Switch Mode Global and Switch Mode Selective.

Changes of the node ID will become directly effective on the EZ221-CO. To ensure that the correct node ID is displayed on the EZ basic unit as well (Configurator menu), you must switch on the coupling module again.

Device profile

In the extension of the CiA-DS-301 communication profile which describes the communication mechanisms between nodes, the CANopen uses so-called device profiles for the essential device classes. The device profiles describe the device functions. The EZ221-CO cannot be assigned to an existing device profile.

5 Object Dictionary

The object dictionary of the EZ221-CO contains the entries described below.

Communication parameters A detailed description of the communication parameters is provided in the CiA specification (reference CiA document [1] for details.

The objects 1000_{hex} , 1001_{hex} and 1018_{hex} are required for all CANopen devices. All other objects are optional; the table below shows which of these are supported by the EZ221-CO.

The table below lists the object dictionary entries 1000_{hex} to 1018_{hex} .

Index	Sub- index	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1000	00	Device Type	UNSIGNED32	ro ROM	00000000	CANopen device without device profile
1001	00	Error Register	UNSIGNED8	ro RAM		Error indication: 00 _{hex} no error
1003	00	Pre-defined Error Field	UNSIGNED8	rw RAM	00	Error history
	01 to 10 ¹⁾	Default Error Field	UNSIGNED32	ro RAM		Error description (→reference CiA document [1] for details)
1005	00	COB-ID SYNC Message	UNSIGNED32	rw NVM-PA	0000080	COB-ID of the SYNC object, device consumes the SYNC message

Index	Sub- index	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1008	00	Manufacturer Device Name	VISIBLE_STRING ²⁾	ro NVM-RO	45 41 53 59 32 32 31 2D 43 4F	Device name of the module (EZ221-CO)
1009	00	Manufacturer Hardware Version	VISIBLE_STRING8	ro NVM-RO	0001.000 (Example)	Hardware version of the module
A 100	00	Manufacturer Software Version	VISIBLE_STRING8	ro NVM-RO	0001.001 (Example)	Software version of the module
C 100	00	Guard Time	UNSIGNED16	rw NVM-PA	00 00 _{hex} Resolution in 1 ms	Guard Time in milliseconds
100D	00	Life Time Factor	UNSIGNED8	rw NVM-PA	00 _{hex}	Multiplier for the Guard Time, the result is equivalent to the maximum interval between the transfer of two Guarding message frames
1010	00	Store Parameters	UNSIGNED8	ro ROM	01	Max. number of storing options
	01	SAVE all Parameters	UNSIGNED32	rw RAM	wr: 65766173 rd: 00000001	→reference CiA document [1] for details)

Index	Sub- index	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1011	00	Restore default Parameters	UNSIGNED8	ro ROM	01	Loads the default parameters
	01	LOAD all Parameters	UNSIGNED32	rw RAM	wr: 64616F6C rd: 00000001	The device restores factory set parameters. These parameters are retained until the next power on event (→ reference CiA document [1] for details)
1014	00	COB-ID EMCY Message	UNSIGNED32	ro ROM	00000080 + node ID	CAN identifier of the emergency message
1015	00	Inhibit Time EMCY	UNSIGNED16	rw NVM-PA	0000 Resolution in 100 μs	Time interval between the transmission of two EMCY messages
1017	00	Producer Heartbeat Time	UNSIGNED16	rw NVM-PA	0000 Resolution in 1 ms	Time interval between the transmission of two heartbeat messages

Index	Sub- index	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1018	00	Identity Object	UNSIGNED8	ro NVM-RO	04	General device information
	01	Vendor ID	UNSIGNED32	ro NVM-RO	0000003	Manufacturer
	02	Product Code	UNSIGNED32	ro NVM-RO	0323353	Product number
	03	Revision Number	UNSIGNED32	ro NVM-RO	00010001 (Example)	Version
	04	Serial Number	UNSIGNED32	ro NVM-RO	4010016 (Example)	Serial number

1) The EZ221-CO supports up to 16 entries in the error log.

2) The maximum string length is 31 characters, including the delimiter "\0".

The EZ221-CO supports the first server SDO of the Predefined Connection Set. The table below shows the object dictionary entry 1200_{hex} : Server SDO parameters of the first server SDO.

Index	Sub- index	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1200	00	Server SDO Parameter	UNSIGNED8	ro ROM	02	Number of valid subindexes
	01	COB-ID Client \rightarrow Server (rx)	UNSIGNED32	ro ROM	00000600 + node ID	COB-ID of the RxSDO. The ID is derived from the Predefined Connection Set.
	02	COB-ID Server → Client (tx)	UNSIGNED32	ro ROM	00000580 + node ID	COB-ID of the TxSDO. The ID is derived from the Predefined Connection Set.

The EZ221-CO supports the first receive SDO of the Predefined Connection Set. The receive PDOs 2 to 4 are not supported. The table below shows the object dictionary entry 1400_{hex}: Communication parameters of the first receive PDO.

Index	Subin dex	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1400	00	Receive PDO Parameter	UNSIGNED8	ro NVM-PA	02	Communication parameter of the first RxPDO, number of valid subindexes
	01	COB-ID	UNSIGNED32	rw NVM-PA	00000200 + node ID	COB ID of the first Rx PDO, reference CiA document [1] for details)
	02	Transmission Type	UNSIGNED8	rw NVM-PA	FF	PDO transmission type: asynchronous

With the first receive PDO, the output data is stored in the object dictionary (index 2011_{hex} , subindex 00_{hex}) and is transferred by means of a standard protocol to the basic unit via EZ-LINK. The table below shows the object dictionary entry 1600_{hex} : Mapping parameters of the first receive PDO.

Index	Subin dex	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1600	00	Receive PDO Mapping	UNSIGNED8	ro ROM	01	Mapping parameters of the first Rx PDO, number of valid subindexes
	01	Mapped Object 1	UNSIGNED32	ro ROM	2011001	Index 2011_{hex} , subindex 00_{hex} , length = 24 bits

The EZ221-CO supports the first Transmit PDO of the Predefined Connection Set. The transmit PDOs 2 to 4 are not supported. The table below shows the object dictionary entries 1800_{hex}: Communication parameters of the first Transmit PDO.

Index	Subi ndex	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1800	00	Transmit PDO Parameter	UNSIGNED8	ro NVM-PA	05	Communication parameters of the first TxPDO. Number of valid subindexes
	01	COB-ID	UNSIGNED32	rw NVM-PA	00000180 + node ID	COB identifier, reference CiA document [1] for details)
	02	Transmission Type	UNSIGNED8	rw NVM-PA	FF	PDO transmission type: asynchronous
	03	Inhibit Time	UNSIGNED16	rw NVM-PA	0000	Inhibit time (min. time interval between the next transmission of a PDO) in ms 0000 _{hex} = transmit now
	05	Event Timer	UNSIGNED16	rw NVM-PA	0000	Event counter 0000 _{hex} = not used

With the first TxPDO, the input data is retrieved from the object dictionary (index 2012_{hex} , subindex 00_{hex}) and transferred after the first RxPDO has been received. The table below shows the object dictionary entry $1A00_{hex}$: Mapping parameters of the first Transmit PDO.

Index	Subin dex	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1A00	00	Transmit PDO Mapping	UNSIGNED8	ro ROM	01	Mapping parameters of the first TxPDO, number of valid subindexes
	01	Mapped Object 1	UNSIGNED32	ro ROM	20120018	Index 2012_{hex} , subindex 00_{hex} , length = 24 bits

Manufacturer-specific
objectsIn addition to the device profile objects, the object dictionary
also contains the definitions of manufacturer-specific objects.
The area between index 2000_{hex} and 5FFF_{hex} in the object
dictionary of the EZ221-CO is reserved for these objects. The
table below lists the corresponding manufacturer-specific
objects used.

Index	Sub- index	Object name	Data type	Access location	Mapp able	FS	Meaning
hex	hex					hex	
2001 ¹⁾	00	Coupling error	UNSIGNED8	ro EZ	No	-	Error status of the EZ221-CO
2002 ¹⁾	00	EZ error	UNSIGNED8	ro EZ	No	-	Error status of the EZ/EZD basic unit
2011	00	Output data	UNSIGNED24	rw EZ	Yes	140000	Output data to the EZ/EZD basic unit
2012	00	Input data	UNSIGNED24	ro EZ	Yes	-	Input data from the EZ/ EZD basic unit
2020	00	Status	UNSIGNED8	ro EZ	No	FF	$\begin{array}{l} Status \ 00_{hex} = \\ valid \ data, \\ 01_{hex} = \\ invalid \ data, \\ FF_{hex} = \\ Initialization \end{array}$
2021	00	Command	DOMAIN Length = 7	rw EZ	No	-	Not used
2022	00	Response	DOMAIN Length = 7	ro EZ	No	-	Not used
3020	00	Status	UNSIGNED8	ro EZ	No	FF	Status $00_{hex} =$ valid data, $01_{hex} =$ invalid data, $FF_{hex} =$ Initialization

Index	Sub-	Object	Data type	Access	Марр	FS	Meaning
	index	name		location	able		
hex	hex					hex	
3021	00	Command					
			Length = 8	EZ/EZD			EZ700/800,
							EZD-CP8
3022	00	Response	DOMAIN	ro	No	-	Response
			Length = 8	EZ/EZD			from
							EZ700/800,
							EZD-CP8

1) These two entries are also transmitted via the emergency message frame in the first two bytes of the Manufacturer Specific Error Field → section "Error messages (Emergency)".

Error messages (Emergency)	The EZ221-CO supports the defined generic error (1000_{hex}) described in the table below. It is triggered when the Generic Error bit 0 is set in the error register (index 1001_{hex} , subindex 00_{hex}).
	In the manufacturer-specific error entry (Manufacturer Specific Error Field), byte 0 outputs the error code of the EZ221-CO (index 2001_{hex} , subindex 00_{hex}), and byte 1 outputs the error code of the connected EZ/EZD (index 2002_{hex} , subindex 00_{hex}).

Data byte	Contents	Value	Description
1	Generic Error Code	1000 _{hex}	Generic Error (→ reference CiA
2	-		document [1] for details
3	Error Register	01 _{hex}	Error register (index 1001 _{hex} , subindex 00 _{hex})
4	Manufacturer Specific Error Field (0)	XX _{hex}	Coupling error (index 2001 _{hex} , subindex 00 _{hex})
5	Manufacturer Specific Error Field (1)	00 _{hex}	EZ error (index 2002 _{hex} , subindex 00 _{hex})

Data byte	Contents	Value	Description
6	Manufacturer Specific Error Field (2)	00 _{hex}	not used
7	Manufacturer Specific Error Field (3)	00 _{hex}	not used
8	Manufacturer Specific Error Field (4)	00 _{hex}	not used

The last 16 errors are stored in the Predefined Error Field 1003_{hex} of the object dictionary and can be retrieved via server SDO. Format of entries in the Standard Error Fields (Subindex 01_{hex} to 10_{hex}):

Data byte	Contents	Value	Description
1	Error Code	1000 _{hex}	Generic Error (→ reference CiA
2			document [1] for details
3	Additional Information	xx _{hex}	Coupling error (index 2001 _{hex} , subindex 00 _{hex})
4		00 _{hex}	EZ error (index 2002 _{hex} , subindex 00 _{hex})

Third data byte: coupling module status

Value 00_{hex} The EZ basic unit is connected to the EZ221-CO gateway via EZ-LINK.

Value 04_{hex} The EZ basic unit is either switched off or is not connected to the EZ221-CO gateway via EZ-LINK.

6 CANopen Protocols

The following protocols are used for the transfer of data via the CANopen bus:

PDO protocol for the transfer of I/O data and operating mode.

Information on the data contents \rightarrow chapter 7.

- SDO protocol for the transfer of control commands:
 - Date and time, summer/winter time
 - Read/write image
 - Read/write function blocks.

Information on data contents \rightarrow chapter 8 (EZ700) and chapter 9 (EZ800/EZD).

 Emergency protocol Information on the data contents → page 55.

PDO protocol

The EZ221-CO by default uses the Write PDO Protocol as shown in the figure below. The Read PDO Protocol (not shown) can be called if required.

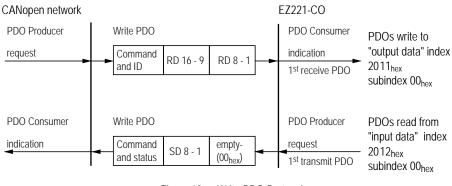


Figure 18: Write PDO Protocol

An indication informs the application that new data can be received via the first receive PDO and stored in the "output data" entry of the object dictionary (index 2011_{hex} , subindex 00_{hex}). The application then requests the transmission of data from the "input data" entry of the object dictionary (index 2012_{hex} , subindex 00_{hex}) via the first Tx PDO.

SDO protocol

General overview

Service Data Objects, or SDOs for short, are used for the confirmed transfer of variable length data between two stations. The data transfer from one station to another is described in the client server model. An SDO client (initiating station) has here direct access to the entries of the object dictionary of an SDO server and can download data records of any length to a server and upload them from a server. The data record to be transferred is specified by the index and subindex of the object dictionary entry that represents the data record. The connection between an SDO server requires two CAN identifiers as a message ID is required for each transfer direction. The connection between a client and a server is also called the SDO channel.

Segmented transfer is required in order for data of any length to be transferred via an SDO channel since the maximum transfer capacity of a CAN telegram is only 8 bytes. This is based on the SDO protocols specified. Reference CiA document [1] for details.

Segmented protocol

If access to the object dictionary requires the transfer of more than 4 bytes, access to the object dictionary entry is specified with a 16-bit index and 8-bit subindex within a confirmed initialization sequence. The confirmed and segmented data is then transferred. Every transfer moves 7 bytes of data. The protocol on which this is based ensures receive-based flow control as well as the detection of any data segments that are transferred twice. The data transfer can be aborted by either the client or the server. The transfer is initiated by means of an Initiate Download sequence for a segmented (non-expedited) data transfer. The data is then transferred in segments. Figure 19 shows the basic principle of the segmented SDO transfer.

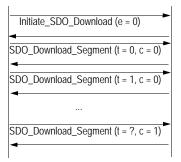


Figure 19: Segmented SDO download protocol

Expedited transfer protocol

If no more than 4 bytes are to be transferred, this can be executed with the expedited transfer protocol. This transfers the data already with a one byte protocol information as well as the address of the OD entry (index, subindex) within the initialization sequence (\rightarrow figure 20).

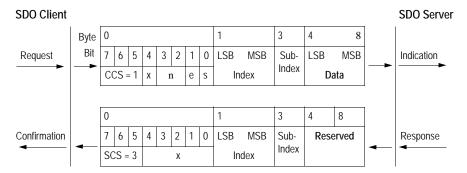
Figure 20: Expedited SDO download protocol.

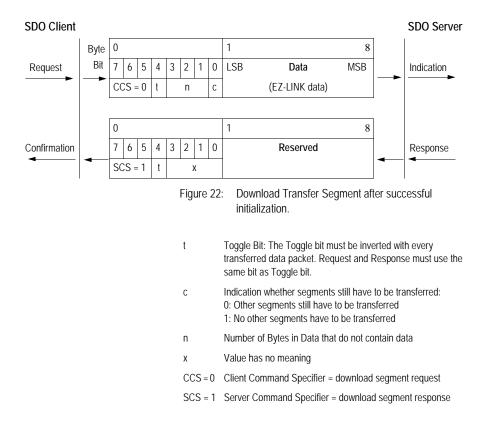
Control byte

The control byte specifies the type of telegram (request/ response), type of transfer (normal/expedited) and the number of bytes in the data field that do not contain any data.

Figure 21 shows the protocol for writing an OD entry using the expedited SDO protocol. The client control byte indicates that an Initiate Download Request is present. This byte also indicates the transfer type as "expedited transfer", as well as the number of data bytes contained in the data field.

The server control byte indicates an Initiate Download Response accordingly. The logical address of the OD entry is then sent as a 16-bit index and 8-bit subdindex following the control bytes.

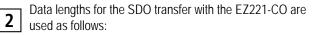



Figure 21: Writing an OD entry using the Expedited Domain Download Protocol

- e = transfer type 0: non-expedited transfer, 1: expedited transfer
- s = size indicator 0: size not indicated, 1: size indicated
- n = number of bytes in data that do not contain data
- x = nc
- CCS = 1 Client Command Specifier = initiate download request
- SCS = 3 Server Command Specifier = initiate download response

Reference CiA document [1] for details.

The Download_SDO_Segment_Protocol is presented here for a better understanding of the following examples.


1

SDO protocol for EZ/EZD

Different CANopen telegram sequences have to be initiated in order to access the acyclic data of the basic unit. The entire sequence is illustrated in Figure 23.

First of all, the client initiates with Initiate SDO Download the write operation to the object dictionary Command entry in the server:

Device series	Object dictionary entries
EZ 700/800/EZD	Index 3021 _{hex} Subindex 00 _{hex}

Device series	Length of the EZ-LINK data
EZ700/800/EZD	8 bytes

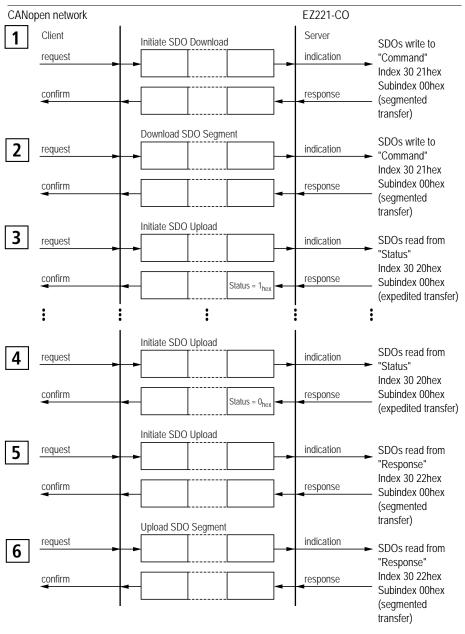
As the data length is more than 4 bytes, a Download SDO Segment is required in order to complete the segmented transfer. The EZ Protocol Handler then downloads the received data to EZ/EZD, using the extended protocol. 3

The client then checks with Initiate SDO Upload whether the transfer is completed. This is indicated by the status in the object dictionary:

Device series	Object dictionary entries
EZ 700/800/EZD	Index 3020 _{hex} Subindex 00 _{hex}

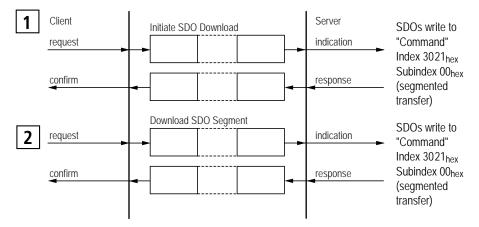
As only one byte is transferred at this stage, this is executed with the Expedited Transfer.

The client polls the status cyclically (at intervals of approx. 50 to 100 ms), until the content is 00_{hex} . The response from EZ/ EZD is then provided in the object dictionary.


Device series	Object dictionary entries
EZ 700/800/EZD	Index 3022 _{hex} Subindex 00 _{hex}

In order to read the message, the client initiates the read operation with Initiate SDO Upload.

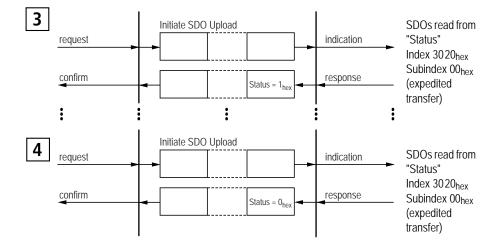
Since this data also has a length of up to 8 bytes, a subsequent Upload SDO Segment is required in order to read the remaining data.



Example of EZ800: Read time (8 bytes)

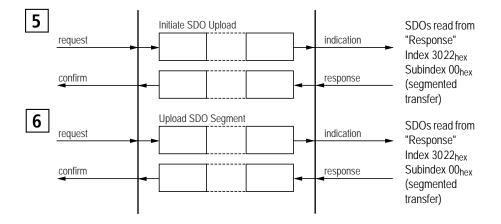
The time is read from the basic unit via the SDO Transfer. The following EZ telegram structure is specified for this in the manual (\rightarrow page 128).

Byte	Meaning		Value
0	Command: Read		93
1	Len		05
2	Index		00
3	Data 1	Hour	00
4	Data 2	Minute	00
5	Data 3	Day	00
6	Data 4	Month	00
7	Data 5	Year	00


This data must be transferred with the CANopen protocol.

Description	ID (hex)	CAN data – byte (hex)							
Write command to EZ221-CO		0	1	2	3	4	5	6	7
Initialize the SDO download with 7 data bytes	602	21	21	30	00	0 8 ¹	00	00	00
Confirmation of the SDO Block Transfer	582	60	21	30	00	00	00	00	00
Transfer of block 1 with 7 data bytes	602	00	93 ²	05 ²	00 ²	00 ²	00 ²	00 ²	00 ²
Confirmation of the data block to be transferred	582	20	00	00	00	00	00	00	00
Transfer of block 2 with 8th data byte	602	1D	00 ²	ХХ	ХХ	ХХ	ХХ	XX	ХХ
Confirmation of the data block to be transferred	582	30	00	00	00	00	00	00	00

1) Number of EZ data bytes to be transferred: EZ700/800/EZD - 8 bytes


2) Valid data from EZ basic unit

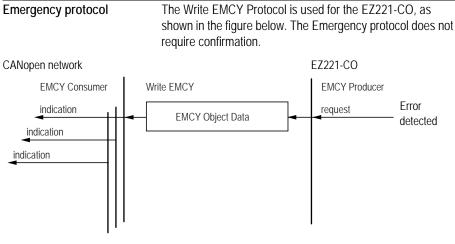
Description	ID (hex)	ex) CAN data – byte (hex)								
Scan status		0	1	2	3	4	5	6	7	
Initialize the SDO upload	602	40	20	30	00	00	00	00	00	
Transfer of status byte	582	4F	20	30	00	01 ³	ХХ	ХХ	ХХ	
New attempt		Data 1 is scanned via index 3020_{hex} and Subindex 00_{hex} until the value = 00_{hex} .								
Initialize the SDO upload	602	40	20	30	00	00	00	00	00	
Transfer of status byte	582	4F	20	30	00	00 ³	хх	ХХ	хх	

3) Only if the value 00_{hex} is shown is it ensured that the corresponding response data is available in the receive buffer.

xx = Value has no meaning

Description	ID (hex)	CAN data – byte (hex)							
Call response		0	1	2	3	4	5	6	7
Initialize the SDO upload	602	40	22	30	00	00	00	00	00
Confirmation of the SDO Upload Block Transfer with 8 bytes	582	41	22	30	00	08 ⁴	00	00	00
Scan of 1st data block	602	60	22	30	00	00	00	00	00
Transfer of the first 7 EZ response bytes	582	00	C2 ⁵	055	00 ⁵	16 ⁵	21 ⁵	01 ⁵	05 ⁵
Scan of 2nd data block	602	70	22	30	00	00	00	00	00
Transfer of the last EZ response byte	582	1D	03 ⁵	ХХ	ХХ	ХХ	XX	XX	XX

4) Number of EZ data bytes to be transferred: EZ700/800/EZD - 8 bytes


5) Valid data from EZ basic unit

xx = Value has no meaning

Evaluation of the received data

Byte	Meaning	Value	
0	Response: read s	uccessful	C2
1	Len		05
2	Index		00
3	Data 1	Hour	16
4	Data 2	Minute	21
5	Data 3	Day	01
6	Data 4	Month	05
7	Data 5	Year	03

22:31 pm, 01.05.2003

7 PDO – Direct Data Exchange with EZ/EZD

The CANopen master can exchange the following data with the EZ/EZD via the direct cyclic data exchange (PDO):

- · Write operation:
 - Set and reset the EZ/EZD inputs
 - Determine the RUN/STOP mode.
- · Read operation:
 - Scan the output states of the EZ/EZD
 - Scan the operating mode of the EZ/EZD

The PDO protocol is used for the direct data exchange. Detailed information on this is provided on page 59. The direct data exchange is executed via the object dictionary entries 2011_{hex} (input data) and 2012_{hex} (output data) (\rightarrow page 54).

The terms "input data" and "output data" are used from the point of view of the CANopen master.

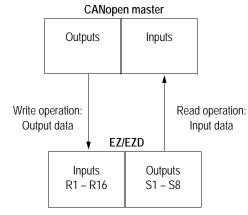


Figure 25: Input and output data as viewed from the CANopen master

Output data (2011 _{hex}): operating mode, R1 – R16	The entries 2011_{hex} and 2012_{hex} can be mapped and can be transferred via PDOs. The object 2011_{hex} contains the output
	data of the CANopen master that is written via the EZ221-CO gateway to the inputs (R1 – R16) of the EZ/EZD. The output data is provided in bytes 0 to 2 and is described in detail in the following tables:

Table 1:	Byte 0 to 2: output data	a, operating mode

Byte	Meaning	Value
0	Set operating mode	→ table 2
1	Set/reset the EZ/EZD inputs R9 to R16	→ table 3
2	Set/reset the EZ/EZD inputs R1 to R8	→ table 4

The master writes the following data to the bytes 0, 1 and 2:

Tuble 2.	Dyn	5 0. Op	cruting	moue				
EZ/EZD operating mode	Bit							
	7	6	5	4	3	2	1	0
Index for setting the basic unit to the safety state	0	0	0	0	0	0	0	0
Index for transferring valid data	0	0	0	1	0	1	0	0
RUN command	0	0	1	1	0	1	0	0
STOP command	0	1	0	0	0	1	0	0

Table 2: Byte 0: Operating mode

0 = status "0", 1 = status "1"

Explanation:

Value $14_{hex} = 00010100_{bin}$: Byte 0 must always contain this value if data is to be written to the EZ/EZD basic unit via the EZ221-CO gateway.

Value 34_{hex} = 00110100_{bin}:

This value sets the EZ/EZD status from STOP to RUN. It is only interpreted as a command and therefore does not permit an additional transfer of data. The index value 14_{hex} must be used in this situation.

Value 44_{hex} = 01000100_{bin}:

This value sets the EZ/EZD status from RUN to STOP. It is also used only as command and it therefore works in the same way as the RUN command.

Value 00_{hex} = 00000000_{bin}:

If this value is written to the control byte, the gateway overwrites the Rx data with zero. This function is only required if a master is to be set to STOP mode and as a resultant final measure transfers zero values in all mapped PDOs in order to ensure a safety state.

Even if the I/O of a control relay can be assigned directly to a specific memory area of the master PLC, the correct data structure format (e.g.: input data byte $0 = 14_{hex}$) must nevertheless still be observed.

EZ/EZD input	Bit							
	7	6	5	4	3	2	1	0
R9								0/1
R10							0/1	
R11						0/1		
R12					0/1			
R13				0/1				
R14			0/1					
R15		0/1						
R16	0/1							

Table 3: Byte 1: Set/reset the EZ/EZD inputs R9 to R16

0 = status "0", 1 = status "1"

Example: Value $19_{hex} = 00011001_{bin}$: Enables R13, R12 and R9.

		rable	4: By	ie z: set/re	Table 4: Byte 2: Set/reset the EZ/EZD inputs RT to R8						
EZ/EZD input	Bit										
	7	6	5	4	3	2	1	0			
R1								0/1			
R2							0/1				
R3						0/1					
R4					0/1						
R5				0/1							
R6			0/1								
R7		0/1									
R8	0/1										

Table 4: Byte 2: Set/reset the EZ/EZD inputs R1 to R8

0 = status "0", 1 = status "1"

	Example: Value $2B_{hex} = 0010 \ 1011_{bin}$: Enables R6, R4, R2 and R1.							
\rightarrow	If cont time:	rol commands and I/O data are used	at the same					
		inputs will retain their previous state or mand has been executed.	until this control					
	The input bytes will be updated after the data exchange control command has been terminated.							
Input data (2012 _{hex}): operating mode, S1 – S8	transferr data of t EZ221-0	ies 2011 _{hex} and 2012 _{hex} can be map ed via PDOs. The object 2012 _{hex} con he EZ/EZD (S data) that is transferred CO gateway to the CANopen master.	tains the output d via the The tables					
	Table 5:	escribe the structure of the input data Input data, operating mode	in detail.					
	Byte	Meaning	Value					
	0	Scan the operating mode	→ table 6					
	1	Scan status of the EZ outputs S1 to S8	→ table 7					
	2	n.c.	00 _{hex}					

The master reads the following data from bytes 0, 1 and 2:

EZ/EZD identification	on Bit								
	7	6	5	4	3	2	1	0 STOP/RUN	
Without debounce	0	0	0	1	0	0	0	0/1	
With debounce	0	0	1	0	0	0	0	0/1	

Table 6: Byte 0: Operating mode

0 = status "0" 1 = status "1"

Example:

Value 21_{hex} = 00100001_{bin}:

EZ is in RUN mode and operates with debounce

		Table	:7. Ду			outputs 5	1 10 30	
EZ/EZD output	Bit							
	7	6	5	4	3	2	1	0
S1								0/1
S2							0/1	
S3						0/1		
S4					0/1			
S4 S5				0/1				
S6			0/1					
S7		0/1						
S8	0/1							

Table 7:	Byte 1: Status of the EZ outputs S1 to S8
----------	---

0 = status "0" 1 = status "1"

Example: Value $19_{hex} = 00011001_{bin}$: S5, S4 and S1 are active

Byte 2: not used

If control commands and I/O data are used at the same time:

- The inputs will retain their previous state until this control command has been executed.
- The input bytes will be updated again after the data exchange control command has been executed.

If the status value of the coupling module is invalid (= 04_{hex}), then byte 1 (data byte) is transferred with the value 00_{hex} to the communication bus.

8 SDO – Control Commands for EZ700

The object dictionary entries Status (3020_{hex}), Command (3021_{hex}) and Response (3022_{hex}) represent the interface for extended data exchange with EZ700 on the CANopen communication bus. This allows you to transfer services from the following areas:

- Read/write date and time (page 82)
- Read/write image data (page 87)
- Read/write function block data (page 108).

The SDO-CANopen protocol (\rightarrow page 60) is required in order to ensure the safe exchange of data via CANopen from master to slave and vice versa.

Attention!

While a control command is being executed, the input and output data will remain in the state before the control command was called. Only after the control command data exchange has been completed, will the I/O data be refreshed.

Caution!

Only those values specified for the command code should be used. Check the values that you write in order to avoid malfunctions. Please also note the relevant description of the real-time clock provided in the EZ500/700 manual (MN05013003E).

F-T-N

Telegram structure

Byte	Meaning	Value (he	x), sent by
		Master	Slave
0	Command		
	Read	93	-
	Write	B3	-
	Response	_	
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	C0
1	Len	05	05
2	Index	0 – 21	0 – 21
3 – 7	Data 1 – 5	depending → table 8	

1 = Summer time, \rightarrow table 9

2 = Winter time, \rightarrow table 10

Byte	Contents	Operand		Value (hex)
3	Data 1	Hour	0 to 23	0x00 to 0x17h
4	Data 2	Minute	0 to 59	0x00 to 0x3Bh
5	Data 3	Day	Day (1 to 28; 29, 30, 31; depending on month and year)	0x01 to 0x1Fh
6	Data 4	Month	1 to 12	0x01 to 0x0Ch
7	Data 5	Year	0 to 99 (corresponds to 2000-2099)	0x00 to 0x63h

Table 8: Index 0 – date and time of real-time clock

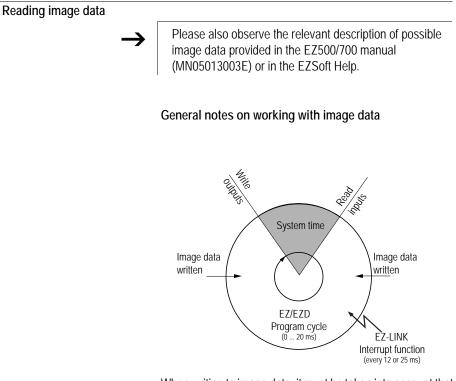
Table 9: Index 1 – Summer time

Byte	Contents		Value (hex)
3	Data 1	Area	
		None	00
		Rule	01
		Automatic EU	02
		Automatic GB	03
		Automatic US	04
for "Area"	= "Rule":		
4	Data 2	Summer time	→ table 11
5	Data 3	switching rule	
6	Data 4		
7	Data 5		

(only valid if Area = "Rule" selected)								
Byte	Contents		Value (hex)					
3	Data 1	Area = Rule	01					
4 – 7	Data 2 – 5	Winter time switching rule	→ table 11					

Table 10: Index 2 – Winter time (only valid if Area = "Rule" selected

Switching rule bit array


Please also read the detailed description in the EZ500/700 manual (MN05013003E).

The following table shows the composition of the corresponding data bytes.

	-		r								
	0	le_1		the first	the	cond	the third	the	=	the last	
	-	Ru	N	on	uo	Sec	on	00	101	uo	
	2		ö		ÿ		с. 	4:		2:	
ita 2	4 3	ay	Su	Мо	Τu		We	Thu		Ļ	6: Sa
õ	2		ö		ÿ		3.	4:		2:	;9
	7 6	Rule_2	D: month	1: after the	2: before	the					
				~			J				
	6										
	10	ay	0 30								
ŝ	₽	Δ	0 tc								
)ata	12										
	13										
	14	ţ	=								
	15	Mor	0 to								
	16										
	17										
	18		o 23								
a 4	19		: 0 to								
Dat	20	nge	Hour								
	21	cha									
	22	time									
	23	e of	59								
	24	Ĩ.	0 to								
	25		iute:								
	26		Mir								
a 5	27										
Dat	28	е									
	29	enc.	Ч	Ч	Ч		ЧС	ЧС		Ч	
	30	iffer	0:3(1:0(1:3(2:0(2:3(3:0(
	31	Ω	ö	<u></u>	2:		3:	4:		2: 2:	
	Bit										
	Data 5 Data 4 Data 3 Data 2	Data 5 Data 4 Data 3 Data 2 31<30<29<28	Data 5 Data 4 Data 3 Data 3 31 30 29 27 26 25 24 23 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 2 1 Difference Time of time change Month Day Rule_2 Day Rule_1	Data 5 Data 4 Data 3 Data 3 Data 3 Data 3 31 30 29 28 27 26 21 20 18 17 16 15 11 10 9 7 6 5 4 2 1 31 30 29 28 27 28 21 20 18 17 16 17 10 9 7 6 5 4 2 1 Difference Time of tim	Data 5 Data 4 Data 3 Data 3 Data 3 Data 3 Data 3 Data 2 Data 2		Data 5 Data 4 Data 3 31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 Difference Time of time change Month Data Month Day 0 11 10 0 8 0: 0:30h Minute: 0 to 59 Hour: 0 to 23 0 to 11 0 to 30 1: 1:00h 1: 1:00h 2: 1:30h 1	Data 5 Data 4 Data 3 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 Difference Time of time Month Month Data Month Day 0: 0:30h Minute: 0 to 59 Hour: 0 to 23 0 to 11 0 to 30 1: 1:00h 1:00h 1:00h 1:00h 1:000 1	Data 5 Data 4 Data 3 Image 3	Data 5 Data 4 Data 3 Image 3 Image 3 Data 3 Image 3	Data 5 Data 4 Data 3 Image 3 Data 3 Image 3

Switching rule hit array Table 11:

F-T-N

When writing to image data, it must be taken into account that an image (e.g. inputs, outputs,...) used in the EZ/EZD program is also written cyclically by the actual program. The only image data that is unchanged is the data that is not used in the program and is therefore not overwritten in the program cycle. This operating principle also means that an image written via EZ-LINK, such as output data is only then output at the physical outputs of the EZ/EZD when the control relay is in RUN mode.

F 'T•N

Read/write image data Overview								
Operands	Meaning	Read/ write	Type (hex)	Page				
A1 – A16	Analog value comparators/threshold comparators: A1 – A16	Read	8C	88				
C1 – C16	Counters: C1 – C16	Read	EE	89				
D1 – D16	Text function blocks: D1 – D16	Read	94	90				
1 – 16	Local inputs: I1 – I16	Read	84	91				
IA1 – IA4	Local analog inputs: IA1 – IA4	Read	8C	92				
M1 – M16, N1 – N16	Write markers: M1 – M16/N1 – N16	Write	86/87	94				
M1 – M16, N1 – N16	Read markers: M1 – M16/N1 – N16	Read	86/87	96				
01 – 04	Operating hours counters: O1 – O4	Read	EF	98				
P1 – P4	Local P buttons: P1 – P4	Read	8A	99				
Q1 – Q8	Local outputs: Q1 – Q8	Read	85	101				
R1 – R16/ S1 – S8	Inputs/outputs of EZ-LINK: R1 – R16/S1 – S8	Read	88/89	102				
T1 – T16	Timing relays: T1 – T16	Read	ED	104				
Y1 – Y4	Year time switch: Y1 – Y8	Read	91	105				
Z1 – Z3	Master reset: Z1 – Z3	Read	93	106				
H1 – H4	7-day time switch: 🕒1 – 🕒8	Read	90	107				

Analog value comparators/threshold comparators: A1 – A16

The following commands are used to read the logic state of the individual analog value comparators A1 to A16.

Byte	Meaning	Value (hex), se	nt by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре	8C	8C
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 12
5	Data 2 (Low Byte)	00	→ table 12
6 – 7	Data 3 – 4	00	00

Telegram structure

1) Possible causes → page 126

Table 12: Byte 4 to 5: Data 1 to 2

Data 1	Bit	7	6	5	4	3	2	1	0
A1									0/1
A2								0/1	
A8		0/1							
D 1 0									
Data 2	Bit	7	6	5	4	3	2	1	0
Data 2 A9	Bit	7	6	5	4	3	2	1	0 0/1
	Bit	7	6	5	4	3	2	1 0/1	
A9	Bit	7	6	5		3	2		

Counters: C1 - C16

The following commands are used to read the logic state of the individual counters C1 - C16.

Telegram structure

Byte	Meaning	Value (hex), sei	nt by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре	EE	EE
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 22
5	Data 2 (Low Byte)	00	→ table 22
6 – 7	Data 3 – 4	00	00

Table 13: Byte 4 to 5: Data 1 to 2

Data 1	Bit	7	6	5	4	3	2	1	0
C1									0/1
C2								0/1	
C8		0/1							
Data 2	Bit	7	6	5	4	3	2	1	0
Data 2 C9	Bit	7	6	5	4	3	2	1	0 0/1
	Bit	7	6	5	4	3	2	1 0/1	-
С9	Bit	7	6	5	4	3	2		-

Text function blocks: D1 – D16

The following commands are used to read the logic state of the individual text function blocks (D markers).

Telegram structure

Byte	Meaning	Value (hex), ser	nt by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре	94	94
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 14
5	Data 2 (High Byte)	00	→ table 14
6 – 7	Data 3 – 4	00	00

Table 14: Byte 4 to 5: Data 1 to 2

Data 1	Bit	7	6	5	4	3	2	1	0
D1									0/1
D2								0/1	
D8		0/1							
Data 2	Bit	7	6	5	4	3	2	1	0
Data 2 D9	Bit	7	6	5	4	3	2	1	0 0/1
	Bit	7	6	5	4	3	2	1 0/1	-
D9	Bit	7	6	5	4	3	2		-

Local inputs: I1 - I16

This command string enables you to read the local inputs of the EZ700 basic unit. The relevant input word is stored in Intel format.

Meaning	Value (hex), sent by			
	Master	Slave		
Command: Read	88	-		
Response:				
Read successful	-	C2		
Command rejected	-	C0 ¹⁾		
Len	02	02		
Туре	84	84		
Index	00	00		
Data 1 (Low Byte)	00	→ table 15		
Data 2 (High Byte)	00	→ table 15		
Data 3 – 4	00	00		
	Command: Read Response: Read successful Command rejected Len Type Index Data 1 (Low Byte) Data 2 (High Byte)	MasterCommand: Read88Response:-Read successful Command rejected-Command rejected-Len02Type84Index00Data 1 (Low Byte)00Data 2 (High Byte)00		

I CICUI AIII SII UCIUI C	ure	struc	Telegram
--------------------------	-----	-------	----------

Table 15: Byte 4 to 5: Data 1 to 2

Data 1	Bit	7	6	5	4	3	2	1	0
11									0/1
12								0/1	
••									
18		0/1							
Data 2		_							
Data 2	Bit	7	6	5	4	3	2	1	0
19	Bit	7	6	5	4	3	2	1	0 0/1
	Bit	7	6	5	4	3	2	1 0/1	-
19	Bit	7	6	5		3	2		-

Local analog inputs: IA1 - IA4

The analog inputs on the EZ700 basic unit (I7, I8, I11, I12) can be read directly via CANopen. The 16-bit value is transferred in Intel format (Low Byte first).

Byte	Meaning	Value (hex), sent by			
		Master	Slave		
0	Command: Read	88	-		
	Response:				
	Read successful	-	C2		
	Command rejected	-	C0 ¹		
1	Len	02	02		
2	Туре	8C	8C		
3	Index	00 - 03 ²	00 - 03 ²		
4	Data 1 (Low Byte)	00	→ table 16		
5	Data 2 (High Byte)	00	→ table 16		
6 – 7	Data 3 – 4	00	00		

Telegram structure

- 1) Possible causes \rightarrow page 126
- 2) 00 = Analog input I7
 - 01 = Analog input 18
 - 02 = Analog input I11
 - 03 = Analog input I12

Example:

A voltage signal is present at analog input 1. The required telegrams for reading the analog value are as follows:

Byte	Meaning	Value (hex), sent by		
		Master	Slave	
0	Command: Read	88	-	
	Response: Read successful	-	C2	
1	Len	02	02	
2	Туре	8C	8C	
3	Index	02 ¹	02 ¹	
4	Data 1	00	4B	
5	Data 2	00	03	
6	Data 3	00	00	
7	Data 4	00	00	

 Table 16:
 Example telegram for reading the value at the analog input

1) 02 = Analog input I11

Byte 4 – Data 1 (Low Byte): 4Bhex

Byte 5 – Data 2 (High Byte): 03hex

→ corresponding 16-bit value: 034B_{hex} = 843

The value 843 corresponds to the 10 bit value of the analog converter. The following conversion is required for the actual analog value:

10 V	, 10 bit		10 V	V 042	0.2414
1023	× value	=>	1023	× 843 =	8.24 V

Write markers: M1 - M16/N1 - N16

Telegram structure

Byte	Meaning	Value (hex), se	nt by
		Master	Slave
0	Command: Write	8C	-
	Response:		
	Write successful	-	C1
	Command rejected	-	C0 ¹
1	Len	01	01
2	Type ²		
	With M marker	86	86
	With N marker	87	87
3	Index ²	00 – 0F	00 – 0F
4	Data 1 (Low Byte) ³	00/01	00/01
5 – 7	Data 2 – 4	00	00

1) Possible causes \rightarrow page 126

2) There are 16 M markers and 16 N markers. The markers are addressed by Type and Index: Use Type to select the M or N marker. Use Index to select the marker number.

3) The marker is set if a value is written to the data byte that does not equal zero. The marker is reset accordingly if the value 0 is written to data byte Data 1.

Example:

Marker M13 is set.

Byte	Meaning	Value (hex), se	nt by
		Master	Slave
0	Command: Write	8C	-
	Response:		
	Write successful	-	C1
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре		
	M marker	86	86
3	Index	0C	OC
4	Data 1	01	00
5 – 7	Data 2 – 4	00	00

1) Possible causes → page 126

Read markers: M1 – M16/N1 – N16

Unlike the write operation, the marker read operation reads the entire marker area of a particular marker type (M or N) is read.

Byte	Meaning	Value (hex), se	Value (hex), sent by			
		Master	Slave			
0	Command: Read	88	-			
	Response:					
	Read successful	-	C2			
	Command rejected	-	C0 ¹			
1	Len	01	01			
2	Туре					
	M marker	86	86			
	N marker	87	87			
3	Index ²	00	00			
4	Data 1 (Low Byte)	00	→ table 17			
5	Data 2 (Low Byte)	00	→ table 17			
6 – 7	Data 3 – 4	00	00			

Telegram structure

1) Possible causes \rightarrow page 126

 2) There are 16 M markers and 16 N markers. The markers are addressed by Type and Index: Use Type to select the M or N marker. Use Index to select the marker number.

Data 1		Bit	7	6	5	4	3	2	1	0
М	Ν									
M1	N1									0/1
M2	N2								0/1	
M8	N8		0/1							
Data 2	2	Bit	7	6	5	4	3	2	1	0
M9	N9									0/1
M10	N10								0/1	
	-									
M16	N16		0/1							

Table 17: Byte 4 to 5: Data 1 to 2

Example:

The N markers are read:

Byte	Meaning	Value (hex), sent by			
		Master	Slave		
0	Command: Read	88	-		
	Response:				
	Read successful	-	C2		
	Command rejected	-	C0 ¹		
1	Len	01	01		
2	Туре				
	N marker	87	87		
3	Index	00	00		
4	Data 1 (Low Byte)	00	04		
5	Data 2 (Low Byte)	00	84		
6 – 7	Data 3 – 4	00	00		

1) Possible causes → page 126

The markers N3, N11 and N16 are set.

Operating hours counters: 01 - 04

The following commands are used to read the logic state of the operating hours counters O1 - O4.

Telegram structure

Byte	Meaning	Value (hex), ser	nt by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре	EF	EF
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 18
5 – 7	Data 2 – 4	00	00

1) Possible causes \rightarrow page 126

Table 18: Byte 4 : Data 1

Data 1	Bit	7	6	5	4	3	2	1	0
01									0/1
02								0/1	
03							0/1		
04						0/1			

Local P buttons: P1 – P4

The local P buttons are the display cursor buttons of the EZ700 basic unit. You can scan the buttons in both RUN and STOP mode.

Ensure that the P buttons are also activated via the System menu (in the basic unit).

Only one byte has to be transferred for the P buttons.

Meaning	Value (hex), sei	nt by
	Master	Slave
Command: Read	88	-
Response:		
Read successful	-	C2
Command rejected	-	C0 ¹
Len	01	01
Туре	8A	8A
Index	00	00
Data 1 (Low Byte)	00	→ table 19
Data 2 – 4	00	00
	Command: Read Response: Read successful Command rejected Len Type Index Data 1 (Low Byte)	MasterCommand: Read88Response:-Read successful-Command rejected-Command rejected01Len01Type8AIndex00Data 1 (Low Byte)00Data 2 - 400

Telegram structure

 \rightarrow

	Dyt	С т.	Data						
Data 1	Bit	7	6	5	4	3	2	1	0
P1									0/1
P2								0/1	
P3							0/1		
P4						0/1			
-					0				
-				0					
-			0						
-		0							

Table 19: Byte 4: Data 1

Example:

Data 1 = $2_{hex} \rightarrow P3$ is active.

Local outputs: Q1 - Q8

The local outputs can be read directly via the CANopen fieldbus.

Telegram structure

Byte	Meaning	Value (hex), se	nt by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0 ¹⁾
1	Len	01	01
2	Туре	85	85
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 20
6 – 7	Data 2 – 4	00	00

1) Possible causes \rightarrow page 126

Table 20: Byte 4 : Data 1

Data 1	Bit	7	6	5	4	3	2	1	0
Q1									0/1
Q2								0/1	
Q8		0/1							

Example:

Data $1 = 52_{hex}$ I Q2, Q5 and Q7 are active.

Inputs/outputs of EZ-LINK: R1 - R16/S1 - S8

This service allows you to read the local R and S data and the data of the NET stations (1 - 8) transferred via EZ-LINK, again from the relevant EZ700 image.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0 ¹⁾
1	Len	01	01
2	Туре		
	for R data	88	88
	for S data	89	89
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 21
5	Data 2 (Low Byte)	00	→ table 21
6 – 7	Data 3 – 4	00	00

Telegram structure

Data 1	1	Bit	7	6	5	4	3	2	1	0
RW	SW									
R1	S1									0/1
R2	S2								0/1	
R8	S8		0/1							
Data 2	2	Bit	7	6	5	4	3	2	1	0
R9	-									0/1
R10	-								0/1	
	-									
R16	_		0/1							

Table 21: Byte 5 to 6: Data 1 to 2

Timing relays: T1 - T16

The following commands are used to read the logic state of the individual timers T1 - T16.

Telegram structure

Byte	Meaning	Value (hex), se	nt by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре	ED	ED
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 22
5	Data 2 (Low Byte)	00	→ table 22
6 – 7	Data 3 – 4	00	00

Table 22: Byte 4 to 5: Data 1 to 2

Data 1	Bit	7	6	5	4	3	2	1	0
T1									0/1
T2								0/1	
T8		0/1							
Data 2	Bit	7	6	5	4	3	2	1	0
Data 2 T9	Bit	7	6	5	4	3	2	1	0 0/1
	Bit	7	6	5	4	3	2	1 0/1	
Т9	Bit	7	6	5	4	3	2		

Year time switch: Y1 – Y8

The following commands are used to read the logic state of the individual year time switches.

Telegram structure

Byte	Meaning	Value (hex), sei	nt by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C01
1	Len	01	01
2	Туре	91	91
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 23
5 – 7	Data 2 – 4	00	00

1) Possible causes \rightarrow page 126

Data 1	Bit	7	6	5	4	3	2	1	0
HY1									0/1
HY2								0/1	
HY3							0/1		
HY4						0/1			
HY5					0				
HY6				0					
HY7			0						
HY8		0							

Example: Data 1 = $1_{hex} \rightarrow HY2$ is active

Master reset: Z1 – Z3

Telegram structure

Byte	Meaning	Value (hex), se	nt by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре	93	93
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 24
5 – 7	Data 2 – 4	00	00

1) Possible causes \rightarrow page 126

Table 24: Byte 4: Data 1

Data 1	Bit	7	6	5	4	3	2	1	0
Z1 for Q outputs									0/1
Z2 for M markers								0/1	
Z3 for outputs and markers							0/1		
		0	0	0	0	0			

7-day time switch: 01 - 08

The following commands are used to read the logic state of the individual 7-day time switches.

Telegram structure

Byte	Meaning	Value (hex), sent by			
		Master	Slave		
0	Command: Read	88	-		
	Response:				
	Read successful	-	C2		
	Command rejected	-	C0 ¹		
1	Len	01	01		
2	Туре	90	90		
3	Index	00	00		
4	Data 1 (Low Byte)	00	→ table 25		
5 – 7	Data 2 – 4	00	00		

1) Possible causes \rightarrow page 126

Table 25:	Byte 4: Data 1
-----------	----------------

Data 1	Bit	7	6	5	4	3	2	1	0
HW1									0/1
HW2								0/1	
HW3							0/1		
HW4						0/1			
HW5					0				
HW6				0					
HW7			0						
HW8		0							

Example: Data 1 = $2_{hex} \rightarrow \overline{\mathbf{6}}3$ is active. Read/write function block data

Please also observe the relevant description of the function blocks provided in the EZ500/700 manual (MN05013003E) or in the EZSoft Help.

F-T-N

General notes

Always note the following when working with function blocks:

- The relevant data is transferred in Intel format. In other words, the first byte is the low byte (Byte 5) and the last byte (byte 8) the high byte.
- The maximum data length is 4 bytes. All values must be transferred in hexadecimal format.

Ov	٨r	di d	``
υv	er	vit	300

Operands	Meaning	Read/ write	Type (hex)	Page
A1 – A16	Analog value comparator/threshold comparator: A1 – A16	Read/write	8D	109
C1 – C16	Counter relays: C1 – C16	Read/write	8F	112
01 – 04	Operating hours counters: O1 – O4	Read/write	92	115
T1 – T16	Timing relays: T1 – T16	Read/write	8E	117
Y1 – Y8	Year time switch: Y1 – Y8	Read/write	A2	120
0 1 – 0 8	7-day time switch: 01 – 08	Read/write	A1	123

Analog value comparator/threshold comparator: A1 – A16

Telegram structure

Byte	Meaning	Value (hex), se	nt by	
		Master	Slave	
0	Command:			
	Read	89	-	
	Write	8D	-	
	Response:			
	Read successful	-	C2	
	Write successful	-	C1	
	Command rejected	-	C0 ¹	
1	Туре	8D	8D	
2	Instance ²	00 – 0F	00 – 0F	
3	Index	→ table 26		
4 – 7	Data 1 – 4	depending on index, \rightarrow table 27		

1) Possible causes \rightarrow page 126

2) EZ provides 16 analog comparators A1 to A16 for use as required. These can be addressed using the instance (0 – F).

Index (hex)	Operand		Read	Write
00	Parameters → table 27		×	
01	Control byte → table 28		×	
02	Comparison value 1	I1 ²	×	C ¹
03	Comparison value 2	I2 ²	×	c ¹
04	Gain factor for I1 (I1 = F1 \times I1)	F1 ²	×	C ¹
05	Gain factor for I2 (I2 = F2 \times I2)	F2 ²	×	C ¹
06	Offset for value I1 (I1 = OS + actual value at I1)	OS ²	×	C ¹
07	Switching hysteresis for value I2	HY ²	×	C ¹

Table 26: Operand overview

1) The value can only be written if it is assigned a constant in the program.

2) A 16-bit value is transferred in data bytes Data 1 – Data 2. It should be remembered that the low byte 1 is in Data 1 (Byte 5) and the high byte 2 (byte 8) in Data 2.

Example: $5327_{dec} = 14CF_{hex} \rightarrow Data 1 = 0xCF$, Data 2 = 0x14

							inuc/			inicic							
Meaning	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Appears in the p	aram	eter	men	u													
Yes/no																	0/1
Compare			I														
FB not used														0	0	0	
EQ (=)														0	0	1	
GE (≧)														0	1	0	
LE (≦)														0	1	1	
GT (>)														1	0	0	
LT (<)														1	0	1	
Use as constant	and	there	efore	can	be w	ritte	n to										
I1= Constant													0/1				
F1= Constant												0/1					
I2= Constant											0/1						
F2 = Constant										0/1							
OS = Constant									0/1								
HY = Constant								0/1									
Not used		0	0	0	0	0	0										

Table 27: Index 00 – Parameters

Example:

Data 1 (Byte 4) = 0xA3, Data 2 (Byte 5) = 0x03 \rightarrow Resulting 16-bit value = 03A3_{hex}

Meaning: HY, OS, F2, F1 are assigned a constant; I1, I2 are assigned to a variable such as I7, I8 C2...etc., appears in the Parameter menu;

The output of the analog value comparator is active for as long as the comparison (I1 \times F1) + OS = (I2 \times F2) + HY is fulfilled.

Table 28: Index 01 – Control byte

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		-	-	-	-	-	-	-	Q11
1) Status 1 if comparison condition is fulfilled.									

Byte	Meaning	Value (hex), sent b	у
		Master	Slave
0	Command:		
	Read	89	-
	Write	8D	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	C0 ¹
1	Туре	8F	8F
2	Instance ²	00 – 0F	00 – 0F
3	Index	→ table 29	
4 – 7	Data 1 – 4	depending on index	, → table 30

Counter relays: C1 – C16

Telegram structure

1) Possible causes \rightarrow page 126

2) EZ provides 16 counters C1 to C16 for use as required. These can be addressed using the instance (0 – F).

Table 29: Operand overview

Index (hex)	Operand		Read	Write
00	Parameters \rightarrow table 30		×	
01	Control byte → table 31		×	
02	Actual value	S1 ²	×	c ¹
03	Counter setpoint 2	S2 ²	×	c ¹

1) The value can only be written if it is assigned to a constant in the program.

2) A 16-bit value is transferred in data bytes Data 1 – Data 2. It should be remembered that Data 1 is the low byte and Data 2 the high byte.

Meaning	Bit	7	6	5	4	3	2	1	0	
Appears in the parameter menu										
Yes/no									0/1	
Counter mode										
FB not used							0	0		
Up/down counter (N)							0	1		
High-speed up/down counter (H)							1	0		
Frequency counter (F)							1	1		
Use as constant and therefore can be written to										
Counter setpoint S1						0/1				

_

Table 30: Index 00 – Parameters

Example:

Data 1 (Byte 4) = 0x07

Meaning:

Unused bits

The values appear in the Parameter menu. The counter is used in the mode of the frequency meter. The counter setpoint 1 is not assigned to a constant and cannot therefore be written to.

Table 31: Index 01 – Control byte

Data 1	Bit	7	6	5	4	3	2	1	0
FB output		-	-	-	-	C4	RE ³	D ²	Q11

1) Switch contact

- 2) Count direction: 0 = up counting,
 - 1 = down counting
- 3) Reset, the timing relay is reset (reset coil)
- 4) Count coil, counts on every rising edge

Example:

the actual value of C3 is to be read:

Byte	Meaning	Value (hex)	, sent by
		Master	Slave
0	Command: Read	89	-
	Response: Read successful	-	C2
1	Туре	8F	8F
2	Instance	02	02
3	Index	02	02
4	Data1	00	12
5	Data 2	00	03
6	Data 3	00	00
7	Data 4	00	00

Explanation:

Data 1 = 12 Data 2 = 03 \rightarrow resulting 16-bit value = 0312_{hex} = 786_{dec}

Counter status = 786

Operating hours counters: 01 – 04

Telegram structure

Meaning	Value (hex), ser	nt by
	Master	Slave
Command:		
Read	89	-
Write	8D	-
Response:		
Read successful	-	C2
Write successful	-	C1
Command rejected	-	C0 ¹
Туре	92	92
Instance ²	00 - 03	00 - 03
Index	→ table 32	
Data 1 – 4	depending on inc	dex, → table 33
	Command: Read Write Response: Read successful Write successful Command rejected Type Instance ² Index	MasterCommand:89Read89Write8DResponse:-Read successful-Write successful-Command rejected-Type92Instance ² 00 - 03Index-> table 32

1) Possible causes \rightarrow page 126

2) EZ provides 4 operating hours counters O1 to O4. These can be addressed using the instance (0 – 3).

Table 32: Operand overview

Index (hex)	Operand		Read	Write
00	Parameters \rightarrow table 33		×	
01	Control byte \rightarrow table 34		×	
02	Actual value	S1 ²	×	c ¹
03	Counter setpoint 2	S2 ²	×	C ¹

1) The value can only be written if it is assigned to a constant in the program.

2) A 32-bit value is transferred in data bytes Data 1 – Data 4. It should be remembered that the Data 1 is the low byte and Data 4 the high byte.

Meaning	Bit	7	6	5	4	3	2	1	0
Appears in the parameter menu									
Yes/no									0/1
Use in the program		1							
Setpoint S1								0/1	
Unused bits		-	-	-	-	-	-		

Table 33: Index 00 – Parameters

Example:

Data 1 (Byte 4) = 0x01

Meaning:

The values appear in the Parameter menu.

Table 34: Index 01 – Control byte

Data 1	Bit	7	6	5	4	3	2	1	0
FB output		-	-	-	-	-	RE ³	EN ²	Q1 ¹

1) Switch contact

2) Enable, the timing relay is started (trigger coil)

3) Reset, the timing relay is reset (reset coil)

Example:

Index 02/03

Transferred values: Data 1 0x21

Data 2 0x23 Data 3 0x40 Data 4 0x00

Resulting value: $00402321_{hex} = 4203297_{dec}$

Byte	Meaning	Value (hex),	sent by
		Master	Slave
0	Command:		
	Read	89	-
	Write	8D	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	C0 ¹
1	Туре	8E	8E
2	Instance ²	00 – 0F	00 – 0F
3	Index	→ table 35	
4 – 7	Data 1 – 4	depending of → table 36	n index,

Timing relays: T1 – T16

Telegram structure

1) Possible causes \rightarrow page 126

2) EZ provides 16 timing relays T1 to T16 for use as required. These can be addressed using the instance (0 – F).

Table 35: Operand overview

Index (hex)	Operand		Read	Write
00	Parameters \rightarrow table 36		×	
01	Control byte → table 37		×	
02	Actual value 1	Т	×	C ¹
03	Time setpoint 1	S1 ²	×	C ¹
04	Time setpoint 2	S2 ²	×	C ¹

1) The value can only be written if it is assigned to a constant in the program.

2) A 16-bit value is transferred in data bytes Data 1 – Data 2. It should be remembered that the low byte is in Data 1 and the high byte in Data 2.

	– Par	amei	ers						
Meaning	Bit	7	6	5	4	3	2	1	0
Appears in the parameter menu									
Yes/no									0/1
Timer mode									
On-delayed						0	0	0	
Off-delayed						0	0	1	
On-delayed with random setpoint						0	1	0	
Off-delayed with random setpoint						0	1	1	
On and off delayed (two time setpoints)						1	0	0	
On and off delayed each with random setpoint (two time setpoints)						1	0	1	
Impulse transmitter						1	1	0	
Flashing relay (two time setpoints)						1	1	1	
Time base									
FB not used				0	0				
Millisecond: S				0	1				
Second: M:S				1	0				
Minute: H:M				1	1				
Use as constant and therefore can be written to									
Time setpoint S1			0/1						
Time setpoint S2		0/1							
				• •					

Table 36:	Index 00 -	Parameters

Example:

Data 1 (Byte 4) = 0xAC

Meaning:

The values appear in the Parameter menu. The time is used in the impulse transmitter mode with the Second time base. The time setpoint S1 is assigned a constant and the time setpoint S2 is assigned a variable such as I7, I8 C2...etc.

Table 37: Index 01 – Control byte

	Bit	7	6	5	4	3	2	1	0
FB input/output Data 3		-	-	-	-	ST ⁴	RE ³	EN ²	Q1 ¹

1) Switch contact

2) Enable, the timing relay is started (trigger coil)

3) Reset, the timing relay is reset (reset coil)

4) Stop, the timing relay is stopped (Stop coil)

Example:

The time setpoint 1 is to be read:

Byte	Meaning	Value (hex), sent by				
		Master	Slave			
0	Command: Read	89	-			
	Response: Read successful	-	C2			
1	Туре	8E	8E			
2	Instance	00	00			
3	Index	03	03			
4	Data1	00	4C			
5	Data 2	00	06			
6	Data 3	00	00			
7	Data 4	00	00			

Explanation:

Data 1 = 4C

Data 2 = 06

→ resulting 16-bit value = $064C_{hex} = 1612_{dec}$

Meaning depending on set time base:

millisecond	S	16120 ms	16,120 s
Seconds	M:S	1620 s	26:52 Minutes
Minute	H:M	1612 min	67:04 Hours

Byte	Meaning	Value (hex), se	nt by			
		Master	Slave			
0	Command:					
	Read	89	-			
	Write	8D	-			
	Response:					
	Read successful	-	C2			
	Write successful	-	C1			
	Command rejected	-	C0 ¹			
1	Туре	A2	A2			
2	Instance ²	00 – 07	00 - 07			
3	Index	→ table 38				
4 – 7	Data 1 – 4	depending on index, → table 39				

Year time switch: Y1 – Y8

Telegram structure

1) Possible causes \rightarrow page 126

 EZ provides 8 year time switches Y1 to Y8 for use as required. These can be addressed using the instance (0 – 7).

Index (hex)	Operand	Read	Write
00	Parameters \rightarrow table 39	×	
01	Control byte → table 40	×	
	Channel A	×	c ¹
11	Time point ON	×	c ¹
12	Time point OFF	×	c ¹
	Channel B	×	c ¹
21	Time point ON	×	c ¹
22	Time point OFF	×	c ¹
	Channel C	×	c ¹
31	Time point ON	×	c ¹
32	Time point OFF	×	c ¹
	Channel D	×	c ¹
41	Time point ON	×	c ¹
42	Time point OFF	×	C1

Table 38: Operand overview

1) The value can only be written if it is assigned to a constant in the program.

Note: The switch points are transferred in data bytes Data 1 – Data 3.

Table 39: Index 00 – Paramete	ers
-------------------------------	-----

Meaning	Bit	7	6	5	4	3	2	1	0

Appears in the parameter menu

-	Channel A								0/1
-	Channel B							0/1	
-	Channel C						0/1		
-	Channel D					0/1			
Un	used bits	-	-	-	-				

Example:

Data 1 (Byte 4) = $0x03 \rightarrow$ The values of the year time switch of channel A and B in the parameter menu.

Table 40:	Index 01 – Control byte
-----------	-------------------------

Data 1	Bit	7	6	5	4	3	2	1	0
FB output		-	-	-	-	-	-	-	Q11

1) Status 1, if the count condition is fulfilled.

Channel A, Index 11/12

Index 0x11 channel A ON time Index 0x12 channel A OFF time Data 1 (Byte 4) – Day Data 2 (Byte 5) – Month Data 3 (Byte 6) – Year

Example:

The year time switch channel A is to be activated on the 21.04.2004.

Index = 0x11 Data 1 = 0x15 Data 2 = 0x04 Data 3 = 0x04

The year time switch channel B is to be deactivated on the 05.11.2012.

Index = 0x22Data 1 = 0x05Data 2 = 0x0BData 3 = 0x0C

Telegram structure

Byte	Meaning	Value (hex), sent b	у				
		Master	Slave				
0	Command:						
	Read	89	-				
	Write	8D	-				
	Response:						
	Read successful	-	C2				
	Write successful	-	C1				
	Command rejected	-	C0 ¹				
1	Туре	A1	A1				
2	Instance ²	00 – 07	00 – 07				
3	Index	→ table 41	→ table 41				
4 – 7	Data 1 – 4	depending on index,	depending on index, \rightarrow table 42				

1) Possible causes \rightarrow page 126

 EZ provides 8 7-day time switches 91 to 98 for use as required. These can be addressed using the instance (0 – 7).

Index (hex)	Operand		Read	Write
00	Parameters	$s \rightarrow table 42$	×	
01	Control byte	e → table 43	×	
11	Channel [A	Day on/off	×	C ¹
12	(On time	×	C ¹
13	(Off time	×	c ¹
21	Channel E B	Day on/off	×	C ¹
22	(On time	×	c ¹
23	(Off time	×	c ¹
31	Channel [C	Day on/off	×	C ¹
32	(On time	×	c ¹
33	(Off time	×	c ¹
41	Channel [D	Day on/off	×	C ¹
42	(On time	×	C ¹
43	(Off time	×	C ¹

Table 41: Operand overview

1) The value can only be written if it is assigned to a constant in the program.

Note: A 16-bit value is transferred in data bytes Data 1 – Data 4. It should be remembered that Data 1 is the low byte and Data 2 the high byte.

Me	eaning	Bit	7	6	5	4	3	2	1	0
Ap	pears in the para	amet	er me	enu						
	Channel A									0/1
	Channel B								0/1	
	Channel C							0/1		
	Channel D						0/1			

Table 42: Index 00 – Parameters

Example:

Unused bits

Data 1 (Byte 4) = 0x03

Meaning:

The values of the 7-day time switch from channel A and B appear in the parameter menu.

Table 43:	Index 01 – Control byte
-----------	-------------------------

Data 1	Bit	7	6	5	4	3	2	1	0
FB output		-	-	-	-	-	-	-	Q11

1) Status 1, if the count condition is fulfilled.

Channel A, Index 11/12/13

Index 0x11 channel A Weekday on/off Data 1 (Byte 4) – Weekday on Data 2 (Byte 5) – Weekday off 0x01 = Sunday ... 0x07 = Saturday

The 16-bit value equals 0x00 if the channel is not used.

Index 0x12 – On time (2 Byte) Index 0x13 – Off time (2 Byte) Data 1 (Byte 4) – Hour Data 2 (Byte 5) – Minute

Example: On time at 13:43 p.m. Data 1 = 0x0D Data 2 = 0x2B

Analysis – error codes viaThe EZ700 basEZ-LINKevent of an incompared

The EZ700 basic unit will return a defined error code in the event of an incorrectly selected operating mode or an invalid telegram. The error code transferred has the following structure:

Telegram structure

Byte	Meaning	Slave transmits (value hex)
0	Response	
	Command rejected	C0
1	Туре	00
2	Instance	00
3	Index	00
4	Error code	→ table 44

Table 44: Error codes

	21101 00000
Error code	Description
0x01	Unknown telegram transmitted.
0x02	Unknown object transmitted.
0x03	Unknown command transmitted.
0x04	Invalid instance transmitted.
0x05	Invalid parameter set transmitted.
0x06	An attempt was made to write to a variable that is not a constant.
0x0C	The device is in an invalid device mode. STOP \rightarrow RUN or RUN \rightarrow STOP
0x0D	Invalid display access. Exit the menu level so that the status display is showing in the display. The clock cannot be written to.
0xF0	Attempt made to control an unknown parameter.
0xF1	Impermissible value

9 SDO – Control Commands for EZ800/EZD

The OD entries Status (3020_{hex}), Command (3021_{hex}) and Response (3022_{hex}) provide the interface for extended data exchange with EZ800 and EZD on the CANopen communication bus. This allows you to transfer services from the following areas:

- Read/write date and time (page 128)
- Read/write image data (page 133)
- Read/write function block data (page 153).

The SDO-CANopen protocol (\rightarrow page 60) is required in order to ensure the safe exchange of data via CANopen from master to slave and vice versa.

Attention!

While a control command is being executed, the input and output data will remain in the state before the control command was called. Only after the Control commands data exchange has been completed, will the I/O data be refreshed.

Caution!

Only those values specified for the command code should be used. Check the values that you write in order to avoid malfunctions. \rightarrow

Read/write date and time

Please also note the relevant description of the real-time clock provided in the EZ800 manual (MN05013004E) and the EZD manual (MN05013005E).

Telegram structure

Byte	Meaning	Value (hex), ser	nt by
		Master	Slave
0	Command		
	Read	93	-
	Write	B3	-
	Response		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	C0
1	Len	05	05
2	Index	00	00
3 – 7	Data 1 – 5		
	Read operation	00	→ table 45
	Write operation	→ table 45	00

Table 45: Byte 3 to 7: Data 1 to 5

Byte	Content	S	Value (hex)
3	Data 1	Hour (0 to 23)	00 – 17
4	Data 2	Minute (0 to 59)	00 – 3B
5	Data 3	Day (1 to 31; depending on month and year)	01 – 1F
6	Data 4	Month (1 to 12)	01 – 0C
7	Data 5	Year (0 – 99, corresponds to 2000 – 2099)	00 - 63

Winter/summer time, DST

Byte	Meaning	Value (hex), sent by	
5	0	Master	Slave
0	Command		
	Read	93	-
	Write	B3	-
	Response		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	C0
1	Len	05	05
2	Index		
	Summer/winter time	01 → table 46	→ table 46
	Winter time (according to Area = Rule) ¹	02 → table 47	02 → table 47
3 – 7	Data 1 – 5		
	Read operation	00	depending on index, → table 46, 47
	Write operation	depending on index, → table 46, 47	00

Telegram structure

1) Detailed setting options for EZ800/EZD

Byte	Contents		Value (hex)
3	Data 1	Area	
		None	00
		Manual	01
		Automatic EU	02
		Automatic GB	03
		Automatic US	04
		Rule ¹	05
For Ar	ea = Manual		
4	Data 2	Set summer time day 1 to 28, 29, 30, 31 (depending on month and year)	00 – 3B
5	Data 3	Set Summer time month (1 – 12)	01 – 1F
6	Data 4	Set winter time day 1 to 28, 29, 30, 31 (depending on month and year)	01 – 0C
7	Data 5	Set winter time month (1 – 12)	00 - 63
For Ar	ea = Rule ¹ :		
4 – 7	Data 2 – 5	Summer time switching rule	→ table 48

Table 46: Index 01 – Summer / winter time change

1) Detailed setting options for EZ800/EZD

Table 47: Index 02 – Winter time (only valid if Area = Rule selected)

Byte	Contents		Value (hex)
3	Data 1	Area = Rule	01
4 – 7	Data 2 – 5	Winter time switching rule	→ table 48

Switching rule bit array

Please also read the detailed description in the EZ800 manual (MN05013004E). The following table shows the composition of the corresponding data bytes.

Tabl	e 48:	Table 48: Switching rule bit array	ng ru	le bit an	ray									
	Data 5	a 5					Data 4		Data 3		Data 2			
Bit	31	30 29	28	27 26	25	24	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5	18 17 16 1	5 14 13 12	11 10	9876	54	3 2 1	0
		Rule_1		Day		Rule_2	Day	Month		Time of tin	Time of time change		Difference	e.
	ö	0: on	ö	0: Su	ö	0: month	0 to 30	0 to 11	Hour: 0	Hour: 0 to 23	Minute: 0 to 59		0: 0:30h	
	<u></u>	1: on the first 1: Mon	<u></u>	Mon	<u></u>	1: after the				-			1: 1:00h	
	2:	on the second	5:	Tue	2:	2: before the							2: 1:30h	
	3:	on the third	.: .:	We									3: 2:00h	
	4:	on the fourth	4:	Thu									4: 2:30h	
	5:	on the last	5:	Fri									5: 3:00h	
			;9	Sa										

F-T-N

Example

The real-time clock of the EZ800 is to be set to Friday 23.05.2003, 14:36.

Byte	Meaning	Value (hex), see	nt by
		Master	Slave
0	Command: Write	B3	-
	Response: Write successful	-	C1
1	Len	05	05
2	Index	00	00
3	Data 1 (hour)	0E	00
4	Data 2 (Minute)	24	00
5	Data 3 (day)	17	00
6	Data 4 (Month)	05	00
7	Data 5 (year)	03	00

All values must be transferred as hexadecimal values.

Read/write image data

 \rightarrow

Please also observe the relevant description of possible image data provided in the EZ800 manual (MN05013004E) or in the EZSoft Help. The information provided in section "General notes on working with image data" on page 86 also applies to EZ800.

Overview

Operands	Meaning	Read/write	Command (hex)	Page
IA1 – IA4	Local analog inputs: IA1 – IA4	Read	02	134
ID1 – ID16	Local diagnostics: ID1 – ID16	Read	03	136
IW0	Local inputs: IW0	Read	01	138
IW1 – IW8	Inputs of the stations: IW1 to IW8	Read	01	140
М	Markers: M	Read/write	0B – 0E	141
P1 – P4	Local P buttons: P1 – P4	Read	06	144
QA1	Local analog output: QA1	Read/write	05	146
QW0, QW1 – QW8	Local outputs: QW0/ outputs of the stations QW1 – QW8	Read/write	04	147
R1 – R16 S1 – S8	Inputs/outputs of EZ-LINK: RW/SW	Read	07/09	149
RN1 – RN32 SN1 – SN32	Receive Data Network: RN1 – RN32/ Transmit Data Network: SN1 – SN32	Read	08/0A	151

Local analog inputs: IA1 - IA4

The analog inputs on the EZ800 and EZD basic units can be read directly via CANopen. The 16-bit value is transferred in Intel format (Low Byte first).

Byte	Meaning	Value (hex), s	ent by
		Master	Slave
0	Command: Read	91	-
	Response:		
	Read successful	-	C2
	Command rejected	-	CO
1	Len	02	02
2	Туре	02	02
3	Index	01 – 041	01 – 041
4	Data 1 (Low Byte)	00	See example
5	Data 2 (High Byte)	00	See example
6 – 7	Data 3 - 4	00	00

Telegram structure

1) 01 = Analog input I7

02 = Analog input 18

03 = Analog input I11

04 = Analog input I12

Example

A voltage signal is present at analog input 1. The required telegrams for reading the analog value are as follows:

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	91	-
	Response: Read successful	-	C2
1	Len	02	02
2	Туре	02	02
3	Index	011	01 ¹
4	Data 1	00	D9
5	Data 2	00	02
6	Data 3	00	00
7	Data 4	00	00

1) 01 = Analog input 1

Byte 4 – Data 1 (Low Byte): D9hex

Byte 5 – Data 2 (High Byte): 02hex

→ corresponding 16-bit value: 02D9_{hex} = 729 (7.29 V)

Local diagnostics: ID1 - ID16

The local diagnostics (ID1 – ID8) indicate the status of the individual NET stations. The connection to the remote station (only EZD) is indicated via ID9.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	91	-
	Response:		
	Read successful	-	C2
	Command rejected	-	CO
1	Len	02	02
2	Туре	03	03
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 49
5	Data 2 (High Byte)	00	→ table 49
6 – 7	Data 3 – 4	00	00

Telegram structure

Data 1	Bit	7	6	5	4	3	2	1	0
ID1									0/1
ID2								0/1	
ID8		0/1							
D-4- 0									
Data 2	Bit	7	6	5	4	3	2	1	0
ID9	Bit	7	6	5	4	3	2	1	0 0/1
	Bit	7	6	5	4	3	2	1	-
	Bit	7	6	5	4	3	2		-
ID9 -	Bit	7	6	5		3	2		-

Table 49: Byte 4 to 5: Data 1 to 2

0/1= active/inactive NET station, -= not assigned

Example

Data 1 = F8, Data 2 = FF \rightarrow In the EZ-NET network, the three stations are present with the NET IDs 1, 2, 3

Local inputs: IW0

This command string enables you to read the local inputs of the EZ800/EZD. The relevant input word is stored in Intel format.

relegian suuciule	Telegram	structure
-------------------	----------	-----------

Byte	Meaning	Value (hex), se	nt by
		Master	Slave
0	Command: Read	91	-
	Response:		
	Read successful	-	C2
	Command rejected	-	CO
1	Len	02	02
2	Туре	01	01
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 50
5	Data 2 (High Byte)	00	→ table 50
6 – 7	Data 3 – 4	00	00

Table 50: Byte 4 to 5: Data 1 to 2

Data 1	Bit	7	6	5	4	3	2	1	0
11									0/1
12								0/1	
18		0/1							
Data 2	Bit	7	6	5	4	3	2	1	0
Data 2 19	Bit	7	6	5	4	3	2	1	0 0/1
	Bit	7	6	5	4	3	2	1 0/1	
19	Bit	7	6	5	4	3	2		

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command: Read	91	-
	Response: Read successful	-	C2
1	Len	02	02
2	Туре	01	01
3	Index	00	00
4	Data 1	00	C4
5	Data 2	00	02
6	Data 3	00	00
7	Data 4	00	00

Example: Read local inputs IW0

All values must be transferred as hexadecimal values.

The values Data 1 = C4 and Data 2 = 02 indicate that the inputs 18, 17, 13 and 110 have been set to 1.

Inputs of the stations: IW1 to IW8

The EZ800 and EZD devices can be remotely expanded very simply using the EZ-NET. The service offered here makes it possible to implement read access to the inputs of individual NET stations.

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command: Read	91	-
	Response:		
	Read successful	-	C2
	Command rejected	-	CO
1	Len	02	02
2	Туре	01	01
3	Index	01 – 081	01 – 081
4	Data 1 (Low Byte)	00	→ table 50
5	Data 2 (High Byte)	00	on page 138.
6 – 7	Data 3 – 4	00	00

Telegram structure

1) Corresponds to address of network station

Byte	Meaning	Value (hex), sent by			
		Master	Slave		
0	Command				
	Read	91	-		
	Write	B1	-		
	Response				
	Read successful	-	C2		
	Write successful	-	C1		
	Command rejected	-	C0		
1	Len	→ table 51	→ table 51		
2	Туре				
3	Index				
4 – 7	Data 1 – 4				
	Read operation	00	→ Example 1: setting/resetting a marker bit on page 143		
	Write operation	→ Example 2: write marker word on page 143	00		

Markers:	М
----------	---

Table 51: Byte 1 to 3: Len, Type, Index

Operand		Len	Туре	Index
Marker bit	M1 M96	01 _{hex}	0B _{hex}	01 to 60 _{hex}
Marker byte	MB1 MB96	01 _{hex}	0Chex	01 to 60 _{hex}
Marker word	MW1 MW96	02 _{hex}	0D _{hex}	01 to 60 _{hex}
Marker double word	MD1 MD96	04 _{hex}	0E _{hex}	01 to 60 _{hex}

If required, refer to the more detailed description of the marker allocation in the EZ800 manual. Only a small extract of this manual is shown at this point in order to illustrate the allocation principle.

F-T-N

Attention!

The function blocks and DW markers (32-bit values) of EZ800/EZD operate with signed values.

Applies to MD, MW, MB, M	Left = Most significant bit, byte, word			Right = Least significant bit, byte, word
32 bit	MD1			
16 bit	MW2		MW1	
8 bit	MB4	MB3	MB2	MB1
1 bit	M32 to M25	M24 to M17	M16 to M9	M8 to M1
32 bit	MD2			
16 bit	MW4		MW3	
8 bit	MB8	MB7	MB6	MB5
1 bit	M64 to M57	M56 to M49	M48 to M41	M40 to M33

The relevant marker values are transferred in Intel format. In other words, the first byte is the low byte (Byte 4) and the last byte the high byte. Marker bit 62 is to be set or reset. To set the marker bit write a 1 in the least significant bit of the Data 1 and a 0 to reset it.

Byte	Meaning	Value (he	x), sent by
		Master	Slave
0	Command: Write	B1	-
	Response: Write successful	-	C1
1	Len	01	01
2	Туре	0B	0B
3	Index	3E	3E
4	Data 1	01/001)	00
5 – 7	Data 2 – 4	00	00
1) 01	aat 00 raaat		

1) 01 = set, 00 = reset

Example 2: write marker word

The value 823 is to be written to the marker word MW32: $823_{dec} = 337_{hex} \rightarrow Data \ 1 = 37_{hex}, Data \ 2 = 03_{hex}$

Byte	Meaning	Value (he	x), sent by
		Master	Slave
0	Command: Write	B1	-
	Response: Write successful	-	C1
1	Len	01	01
2	Туре	0D	0D
3	Index	20	20
4	Data 1	37	00
5	Data 2	03	00
6	Data 3	00	00
7	Data 4	00	00

Local P buttons: P1 – P4

The local P buttons are the display cursor buttons of the EZ800/EZD basic unit. You can scan the buttons in both RUN and STOP mode.

 \rightarrow

Ensure that the P buttons are also activated via the SYSTEM menu (in the basic unit).

Byte	Meaning	Value (hex), se	nt by
		Master	Slave
0	Command: Read	91	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0
1	Len	02	02
2	Туре	06	06
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 52
5 – 7	Data 2 – 4	00	00

Only one byte has to be transferred for the P buttons.

Data 1	Bit	7	6	5	4	3	2	1	0
P1									0/1
P2								0/1	
P3							0/1		
P4						0/1			
-					0				
-				0					
-			0						
-		0							

Table 52: Byte 4: Data

Local analog output: QA1

The commands provided can be used to access the local analog output of the EZ800 or EZD basic unit. When writing to the analog output, however, the value will only be output externally if the device concerned is in RUN mode and the image concerned has not been overwritten by the actual program. \rightarrow section "Read/write image data" on page 133.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command		
	Read	91	-
	Write	B1	-
	Response		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	C0
1	Len	02	02
2	Туре	05	05
3	Index	00	00
4 – 5	Data 1 – 2		
	Read operation	00	→ Example
	Write operation	→ Example	00
6 – 7	Data 3 – 4	00	00

Example:

The analog output is to output a value of approx. 5 V.

500 = 01F4_{hex} Byte 4 – Data 1 (Low Byte): F4_{hex} Byte 5 – Data 2 (High Byte): 01_{hex}

Local outputs: QW0/ outputs of the stations QW1 – QW8

The local outputs can be read and written directly via CANopen. However, the outputs are only switched externally if the device is in RUN mode and the addressed output is not being used in the circuit diagram. \rightarrow section "Read/write image data" on page 133.

Byte	Meaning	Value (hex), sen	it by
		Master	Slave
0	Command		
	Read	91	-
	Write	B1	-
	Response		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	C0
1	Len	02	02
2	Туре	04	04
3	Index ¹⁾	00/01 – 08	00/01 – 08
4	Data 1		
	Read operation	00	→ table 49
	Write operation	→ table 53	00
5 – 7	Data 2 – 4	00	00

Telegram structure

1) 00 = Local output

01 - 08 =Outputs of network stations 1 - 8

Data 1	Bit	7	6	5	4	3	2	1	0
Q1									0/1
Q2								0/1	
Q3							0/1		
Q4						0/1			
Q5					0				
Q6				0					
Q7			0						
Q8		0							

Table 53: Byte 4: Data

Inputs/outputs of EZ-LINK: RW/SW

This service allows you to read the local R and S data and the data of the NET stations (1 - 8) transferred via EZ-LINK, again from the relevant EZ800/EZD image.

Byte	Meaning	Value (hex), sent by					
		Master	Slave				
0	Command: Read	91	-				
	Response:						
	Read successful	-	C2				
	Command rejected	-	CO				
1	Len	02	02				
2	Туре	For RW: 07	For RW: 07				
		For SW: 09	For SW: 09				
3	Index	00/01 - 081	00/01 – 081				
4	Data 1 (Low Byte)	00	→ table 54				
5	Data 2 (High Byte)	00	→ table 54				
6 – 7	Data 3 – 4	00	00				

1) 00 = Local input/output

01 - 08 =Address of network station (NET-ID 1 - 8)

Data 1		Bit	7	6	5	4	3	2	1	0
RW	SW									
R1	S1									0/1
R2	S2								0/1	
R3	S3							0/1		
R4	S4						0/1			
R5	S5					0/1				
R6	S6				0/1					
R7	S7			0/1						
R8	S8		0/1							
Data 2	2	Bit	7	6	5	4	3	2	1	0
R9	-									0/1
R10	-								0/1	
R11	-							0/1		
R12	-						0/1			
R13	-					0/1				
R14	-				0/1					
R15	-			0/1						
R16	-		0/1							

Table 54: Byte 4 to 5: Data 1 to 2

Receive Data Network: RN1 – RN32/ Transmit Data Network: SN1 – SN32

 \rightarrow

EZ-NET allows a point-to-point connection to be implemented between the individual NET stations. The RN and SN data are used for the data exchange (see the EZ800 manual).

The RN SN data of the local device (Index = 0) to which the EZ221-CO is fitted cannot be scanned. In this case the command would be denied with the OC_{hex} signal.

Byte	Meaning	Value (hex), s	ent by
		Master	Slave
0	Command: Read	91	-
	Response:		
	Read successful	-	C2
	Command rejected	-	CO
1	Len	04	04
2	Туре	For RN1 – RN	32: 08
		For SN1 – SN	32: 0A
3	Index	01 – 081	01 – 081
4 – 7	Data 1 – 4	00	→ table 55

1) Corresponds to NET-ID

Data 1 Git 7 6 5 4 3 2 1 0 RN1 SN1 \cdot			_								
Note the series of the serie	Data 1		Bit	7	6	5	4	3	2	1	0
RN8 SN8 $\overline{O}/1$ \overline{O} \overline{A} \overline{A} \overline{A} \overline{A} \overline{I} \overline{I} \overline{I} Data 2 Bit \overline{I} $\overline{6}$ $\overline{5}$ $\overline{4}$ $\overline{3}$ $\overline{2}$ $\overline{1}$ $\overline{0}$ RN9 SN9 \overline{I} <td>RN1</td> <td>SN1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0/1</td>	RN1	SN1									0/1
Data 2 Bit 7 6 5 4 3 2 1 0 RN9 SN9 I I I I I III IIII IIII IIII IIII IIII IIII IIII IIIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII										0/1	
RN9 SN9 Image: SN9 I	RN8	SN8		0/1							
Image: state of the state	Data 2		Bit	7	6	5	4	3	2	1	0
RN16 SN16 O/I I SN1 I SN1 I SN1 I I SN1 I I SN1 I	RN9	SN9									0/1
Data 3 Bit 7 6 5 4 3 2 1 0 RN17 SN17 - - - - - 0/1 SN17 - - - - - 0/1 SN24 SN24 - - - - - RN24 SN25 O/1 - - - - - Data 4 SN25 O/1 - - - - - RN25 SN25 - - - - - - - - - - - - - - - -											
RN17 SN17	RN16	SN16		0/1							
Image: constraint of the constraint	Data 3		Bit	7	6	5	4	3	2	1	0
RN24 SN24 O/1 SN25 O/1 O/1 O/1 O/1 Data 4	RN17	SN17									0/1
Data 4 Bit 7 6 5 4 3 2 1 0 RN25 SN25 - - - - - 0/1 -											
RN25 SN25 O/1	RN24	SN24		0/1							
······································	Data 4		Bit	7	6	5	4	3	2	1	0
	RN25	SN25									0/1
RN32 SN32 0/1											

Table 55: Byte 4 to 7: Data 1 to 4

Read/write function block data

Please also note the relevant description of the function blocks provided in the EZ800 manual.

General notes

Always note the following when working with function blocks:

- The relevant data is transferred in Intel format. In other words, the first byte is the low byte (Byte 4) and the last byte (byte 7) the high byte.
- The maximum data length is 4 bytes. All values must be transferred in hexadecimal format.
- All 32-bit values are treated as signed values. When transferring 32-bit values, ensure that the appropriate value range is suitable for long integers, i.e. signed. 32-bit value: -2147483648 .. 0 .. +2147483647

Operands	Meaning	Read/write	Type (hex)	Page
A01 – A32	Analog value comparators: A01 – A32	Read/write	11	155
AR01 – AR32	Arithmetic function block: AR01 – AR32	Read/write	12	157
BC01 – BC32	Block compare: BC01 – BC32	Read/write	25	159
BT01 – BT32	Block transfer: BT01 – BT32	Read/write	26	161
BV01 – BV32	Boolean operation: BV01 – BV32	Read/write	13	163
C01 – C32	Counters: C01 – C32	Read/write	14	165
CF01 – CF04	Frequency counters: CF01 – CF04	Read/write	15	167
CH01 – CH04	High-speed counters: CH01 – CH04	Read/write	16	169
CI01 – CI02	Incremental counters: CI01 – CI02	Read/write	17	171
CP01 – CP32	Comparators: CP01 – CP32	Read/write	18	173
D01 – D32	Text output function blocks: D01 – D32	Read/write	19	175
DB01 – DB32	Data function blocks: DB01 – DB32	Read/write	1A	178
DC01 – DC32	PID controllers: DC01 – DC32	Read/write	27	180
FT01 – FT32	Signal smoothing filters: FT01 – FT32	Read/write	28	183
GT01 – GT32	Receive network data: GT01 – GT32	Read	1B	185
HW01 – HW32	7-day time switches: HW01 – HW32	Read	1C	187
HY01 – HY32	Year time switches: HY01 – HY32	Read	1D	190
LS01 – LS32	Value scaling: LS01 – LS32	Read/write	29	193
MR01 – MR32	Master reset: MR01 – MR32	Read	0F	195
NC01 – NC32	Numerical converters: NC01 – NC32	Read/write	2A	197
OT01 – OT04	Operating hours counters: OT01 – OT04	Read/write	1E	199
PT01 – PT32	Transmit network data: PT01 – PT32	Read	1F	201
PW01 – PW02	Pulse width modulation: PW01 – PW02	Read/write	2B	203
SC01	Synchronize clock: SC01	Read	20	205
ST01	Set cycle time: ST01	Read/write	2C	206
T01 – T32	Timing relays: T01 – T32	Read/write	21	208
VC01 – VC32	Value limitation: VC01 – VC32	Read/write	2D	211

Overview

	l elegram structure	<u>,</u>	
Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	C0
1	Туре	11	11
2	Instance	01 – 20	01 – 20
3	Index	→ table 56	→ table 56
4 – 7	Data 1 – 4	00	depending on index, → table 57, 58

Analog value comparators: A01 – A32

Index (hex)	Operand		Read	Write
. ,				
00	Bit IO, → table 57		×	
01	Mode, \rightarrow table 58		×	
02	Comparison value 1	11	×	C ¹
03	Gain factor for I1 (I1 = F1 \times value)	F1	×	C ¹
04	Comparison value 2	12	×	c ¹
05	Gain factor for I2 (I2 = F2 \times value)	F2	×	C ¹
06	Offset for value I1	OS	×	C ¹
07	Switching hysteresis for value I2 (the value of HY is for both positive and negative hysteresis.)	ΗY	×	c ¹

Table 56: Operand overview

The data for index 2 to 7 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 57: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		-	-	-	-	-	-	CY1	Q12

- 1) Status 1 if the value range is exceeded
- 2) Status 1 if the condition is fulfilled (e.g. I1 < I2 with LT mode)

Table 58: Inc	lex 1 - Mode
---------------	--------------

Data 1 (hex)		
00	LT	Less than (I1 < I2)
01	EQ	Equal to (I1 = IGT)
02	GT	Greater than (I1 > I2)

Byte	Meaning	Value (hex), sent by	
Буге	Meaning		
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	C0
1	Туре	12	12
2	Instance	01 – 20	01 – 20
3	Index	→ table 59	→ table 59
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, \rightarrow table 60, 61
	Write operation	depending on index, → table 60, 61	00

Arithmetic function block: AR01 – AR32

Index (hex)	Operand		Read	Write
00	Bit IO, → table 60		×	
01	Mode, → table 61		×	
02	First operand	11	×	C ¹
03	Second operand	12	×	C ¹
04	Result	QV	×	

Table 59: Operand overview

The data for index 2 to 4 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 60: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1
FB output Data 3		-	-	-	-	-	ZE1	CY2

- 1) Status 1 if the value of the function block output QV (the calculation result) equals zero
- 2) Status 1 if the value range is exceeded

Table 61: Index 1 - Mode

Data 1 (hex)		
00	ADD	Add (I1 + I2 = QV)
01	SUB	Subtract (I1 – I2 = QV)
02	MUL	Multiply (I1 \times I2 = QV)
03	DIV	Divide (I1 : I2 = QV)

Byte	Meaning	Value (hex), sent by						
		Master	Slave					
0	Command:							
	Read	92	-					
	Write	B2	-					
	Response:							
	Read successful	-	C2					
	Write successful	-	C1					
	Command rejected	-	C0					
1	Туре	25	25					
2	Instance	01 – 20	01 – 20					
3	Index	→ table 62	→ table 62					
4 – 7	Data 1 – 4							
	Read operation	00	depending on index, \rightarrow table 63, 64					
	Write operation	depending on index, → table 63, 64	00					

Block compare: BC01 – BC32

Index (hex)	Operand		Read	Write
00	Bit IO, → table 63		×	
01	Mode, → table 64		×	
02	Source range 1	11	×	c ¹
03	Target range 2	12	×	c ¹
04	Number of elements to compare: 8 (max. 192 bytes)	NO	×	C ¹

Table 62: Operand overview

The data for index 2 to 4 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 63: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	EN ¹
FB output Data 3		-	-	-	-	EQ ²	E3 ³	E24	E1 ⁵

- 1) Activates the function block on status 1.
- 2) Status 1 if the data ranges are equal; status 0 if not equal

Error outputs

- 3) Status 1 if the number of elements exceeds the source or target range.
- 4) Status 1 if the source and target range overlap.
- Status 1 if the source or target range are outside of the available marker range (offset error)

Table 64:	Index 1	-	Mode
-----------	---------	---	------

Mode	Data 1 (hex)	Operating mode
	02	Compare (internal EZ status signal for Block Compare mode)

Block transfer:	BT01 -	BT32
-----------------	--------	------

Telegram structure

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	26	26
2	Instance	01 – 20	01 – 20
3	Index	→ table 65	→ table 65
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, \rightarrow table 66, 67
	Write operation	depending on index, → table 66, 67	00

Table 65:	Operand overview
-----------	------------------

Index (hex)	Operand		Read	Write
00	Bit IO, → table 66		×	
01	Mode, → table 67		×	
02	Source range 1	11	×	C ¹
03	Target range 2	12	×	C ¹
04	Number of elements to compare: max. 192 bytes	NO	×	c ¹

1) The value can only be written if it is assigned to a constant in the program.

The data for Index 2 and 3 is transferred as a 32-bit value in Intel format (Low Byte first) (Data 1 – Low Byte .. Data 2 - High Byte).

Table 66: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	T1
FB output Data 3		-	-	-	-	-	E3 ²	E2 ³	E14

1) Transfer of the source address specified at I1 to the target address specified at I2 on rising edge.

Error outputs

- 2) Status 1 if the number of elements exceeds the source or target range.
- 3) Status 1 if the source and target range overlap.
- 4) Status 1 if the source or target range are outside of the available marker range (offset error)

Table 67: Index 1 - Mode

Data 1 (hex)	Operating mode
00	INI: Initializes the target range with a byte value stored at the source address.
01	CPY: Copies a data block from a source to a target range. Data block size is specified at NO.

Boolean operation:	BV01 –	BV32
--------------------	--------	------

Byte	Meaning	Value (hex), sent by	у
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	C0
1	Туре	13	13
2	Instance	01 – 20	01 – 20
3	Index	→ table 68	→ table 68
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 69, 70
	Write operation	depending on index, → table 69, 70	00

Index (hex)	Operand	Rea	d Write
00	Bit IO, → table 69	×	
01	Mode, → table 70	×	
02	First operand I	1 ×	C ¹
03	Second operand I	2 ×	C ¹
04	Operation result (2V X	

Table 68: Operand overview

The data for index 2 to 4 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 69: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1
FB output Data 3		-	Ι	-	Ι	Ι	Ι	ZE1

1) Status 1 if the value of the function block output QV (the operation result) equals zero

Table 70: Index	1	-	Mode
-----------------	---	---	------

10010 70.	maon	Modo
Data 1 (hex)		
00	AND	And operation
01	OR	Or operation
02	XOR	Exclusive Or operation
03	NET	Inverts the individual bits of the value at I1. The inverted value is represented as a signed decimal value.

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	C0
1	Туре	14	14
2	Instance	01 – 20	01 – 20
3	Index	→ table 71	→ table 71
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, \rightarrow table 72
	Write operation	depending on index, → table 72	00

Counters: C01 - C32

Index (hex)	Operand		Value	Read	Write
00	Bit IO		→ table 72	×	
01	Mode/Parameters		-	-	-
02	Upper setpoint	SH	In integer range from –	×	c ¹
03	Lower setpoint	SL	2147483648 to +2147483647	×	c ¹
04	Preset actual value	SV		×	C ¹
05	Actual value in RUN mode	QV		×	

Table 71: Operand overview

The data for index 2 to 5 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 72: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	SE1	D ²	C3	RE ⁴
FB output Data 3		-	-	-	-	ZE ⁵	CY6	FB ⁷	OF ⁸

- 1) Transfer preset actual value on rising edge
- 2) Count direction: 0 = up counting, 1 = down counting
- 3) Count coil, counts on every rising edge
- 4) Reset actual value to zero
- 5) Zero: Status 1 if the value of the function block output QV (the counter status) equals zero
- 6) Carry: Status 1 if the value range is exceeded
- 7) Fall below: Status 1 if the actual value \leq lower setpoint
- 8) Overflow: Status 1 if the actual value \geq upper setpoint

Frequency counters:	CF01	- CF04
---------------------	------	--------

Byte	Meaning	Value (hex), sent by	1
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
2	Туре	15	15
3	Instance	01 – 04	01 – 04
4	Index	→ table 73	→ table 73
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, \rightarrow table 74
	Write operation	depending on index, → table 74	00

Index (hex)	Operand		Read	Write
00	Bit IO, → table 74		×	
01	Mode/Parameters		-	-
02	Upper setpoint	SH	×	C ¹
03	Lower setpoint	SL	×	C ¹
04	Actual value in RUN mode	QV	×	

Table 73: Operand overview

The data for index 2 to 4 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 74: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	EN ¹
FB output Data 3		-	-	-	-	-	ZE ²	FB ³	OF ⁴

1) Counter enable

- 2) Zero: Status 1 if the value of the function block output QV (the counter status) equals zero
- 3) Fall below: Status 1 if the actual value \leq lower setpoint
- 4) Overflow: Status 1 if the actual value \geq upper setpoint

Byte	Meaning	Value (hex), sent by	1
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	16	16
2	Instance	01 – 04	01 – 04
3	Index	→ table 75	→ table 75
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 76
	Write operation	depending on index, \rightarrow table 76	00

High-speed counters: CH01 – CH04

Index (hex)	Operand		Value	Read	Write
00	Bit IO		→ table 76	×	
01	Mode/Parameters		-	-	-
02	Upper setpoint	SH	In integer range from	×	C ¹
03	Lower setpoint	SL	-2147483648 to +2147483647	×	C ¹
04	Preset actual value	SV	1211/10001/	×	C ¹
05	Actual value in RUN mode	QV		×	

Table 75: Operand overview

The data for index 2 to 5 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 76: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	EN ¹	SE ²	D3	RE ⁴
FB output Data 3		-	-	-	-	ZE ⁵	CY6	FB ⁷	OF ⁸

- 1) Counter enable
- 2) Transfer preset actual value on rising edge
- 3) Count direction: 0 = up counting, 1 = down counting
- 4) Reset actual value to zero
- 5) Zero: Status 1 if the value of the function block output QV (the counter status) equals zero
- 6) Carry: Status 1 if the value range is exceeded
- 7) Fall below: Status 1 if the actual value \leq lower setpoint
- 8) Overflow: Status 1 if the actual value \geq lower setpoint

E 1 • N

Incremental counters: CI01 – CI02	
-----------------------------------	--

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	17	17
2	Instance	01 – 02	01 – 02
3	Index	→ table 77	→ table 77
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 78
	Write operation	depending on index, \rightarrow table 78	00

		I able I			
Index (hex)	Operand		Value	Read	Write
00	Bit IO		→ table 78	×	
01	Mode/Parameters		-	-	-
02	Upper setpoint	SH	In integer range from	×	C ¹
03	Lower setpoint	SL	-2147483648 to +2147483647	×	C ¹
04	Preset actual value	SV		×	C ¹
05	Actual value in RUN mode	QV		×	

Table 77: Operand overview

The data for index 2 to 5 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 78: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	EN ¹	SE ²	RE ³
FB output Data 3		-	-	-	-	ZE ⁴	CY5	FB ⁶	OF ⁷

- 1) Counter enable
- 2) Transfer preset actual value on rising edge
- 3) Reset actual value to zero
- 4) Zero: Status 1 if the value of the function block output QV (the counter status) equals zero
- 5) Carry: Status 1 if the value range is exceeded
- 6) Fall below: Status 1 if the actual value \leq lower setpoint
- 7) Overflow: Status 1 if the actual value \geq lower setpoint

E T • N

Byte	Meaning	Value (hex), sent by	1
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	18	18
2	Instance	01 – 20	01 – 20
3	Index	→ table 79	→ table 79
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, \rightarrow table 80
	Write operation	depending on index, → table 80	00

Index (hex)	Operand	Read	I Write
00	Bit IO, → table 80	×	
01	Mode/Parameters	-	-
02	Comparison value I1	×	c ¹
03	Comparison value I2	×	c ¹

Table 79: Operand overview

The data for index 2 and 3 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 80: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1
FB output Data 3		-	-	-	-	GT ¹	EQ ²	LT ³

1) greater than: Status 1 if the value at I1 is greater than value at I2 (I1 > I2)

- 2) equal: Status 1 if the value at I1 is equal to value at I2 (I1 = I2)
- less than: Status 1 if the value at I1 is less than value at I2 (I1 < I2)

Byte	Meaning	Value (hex), sent by			
		Master	Slave		
0	Command:				
	Read	92	-		
	Write	B2	-		
	Response:				
	Read successful	-	C2		
	Write successful	-	C1		
	Command rejected	-	C0		
1	Туре	19	19		
2	Instance	01 – 20	01 – 20		
3	Index	→ table 81	→ table 81		
4 – 7	Data 1 – 4				
	Read operation	00	depending on index, \rightarrow table 82		
	Write operation	depending on index, → table 82	00		

Text output function blocks: D01 – D32 Telegram structure

Index (hex)	Operand	Read	Write	
00	Bit IO, → table 82	×		
01	Mode/Parameters	-	-	
02	Text line 1, column 1 - 4	×		
03	Text line 1, column 5 - 8	×		
04	Text line 1, column 9 - 12	×		
05	Text line 1, column 13 - 16	×		
06	Text line 2, column 1 - 4	×		
07	Text line 2, column 5 - 8	×		
08	Text line 2, column 9 - 12	×		
09	Text line 2, column 13 - 16	×		
10	Text line 3, column 1 - 4	×		
11	Text line 3, column 5 - 8	×		
12	Text line 3, column 9 - 12	×		
13	Text line 3, column 13 - 16	×		
14	Text line 4, column 1 - 4	×		
15	Text line 4, column 5 - 8	×		
16	Text line 4, column 9 - 12	×		
17	Text line 4, column 13 - 16	×		
18	Variable 1	×	C ¹	
19	Variable 2	×	C ¹	
20	Variable 3	×	C ¹	
21	Variable 4	×	C ¹	
22	Scaling minimum value 1	×		
23	Scaling minimum value 2	×		
24	Scaling minimum value 3	×		
25	Scaling minimum value 4	×		
26	Scaling maximum value 1	×		

Table 81: Operand overview

Read Write

Index (hex)	Operand

(hex)			
27	Scaling maximum value 2	×	
28	Scaling maximum value 3	×	
29	Scaling maximum value 4	×	
30	Control information line 1	×	
31	Control information line 2	×	
32	Control information line 3	×	
33	Control information line 4	×	

 The value can only be written if it is assigned to a constant in the program.

The variables 1 to 4 (index 18 to 21) are transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 82:	Index 0 – Bit IO
Table 82:	Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	EN ¹
FB output Data 3		-	-	-	-	-	-	-	Q1 ²

1) Text function block enable

2) Status 1, text function block is active

F-T-N

Byte	Meaning	Value (hex), sent by	1
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	1A	1A
2	Instance	01 – 20	01 – 20
3	Index	→ table 83	→ table 83
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, \rightarrow table 84
	Write operation	depending on index, → table 84	00

Data function blocks: DB01 – DB32

Index (hex)	Operand	Read	Write
00	Bit IO, → table 84	×	
01	Mode/Parameters	-	-
02	Input value: value that I1 is transferred to the QV output when the FB is triggered.	×	c ¹
03	Output value QV	×	

Table 83: Operand overview

1) The value can only be written if it is assigned to a constant in the program.

The data for index 2 and 3 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 84: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	T1
FB output Data 3		-	-	-	-	-	-	-	Q1 ²

1) Transfer of the value present at I1 on rising edge.

2) Status 1 if the trigger signal is 1.

	Telegram structure							
Byte	Meaning	Value (hex), sent by						
		Master	Slave					
0	Command:							
	Read	92	-					
	Write	B2	-					
	Response:							
	Read successful	-	C2					
	Write successful	-	C1					
	Command rejected	-	C0					
1	Туре	27	27					
2	Instance	01 – 20	01 – 20					
3	Index	→ table 85	→ table 85					
4 – 7	Data 1 – 4							
	Read operation	00	depending on index, \rightarrow table 86, 87					
	Write operation	depending on index, → table 86, 87						

PID controllers: DC01 – DC32

Index (hex)	Operand		Read	Write
00	Bit IO, → table 86		×	
01	Mode, → table 87		×	
02	Setpoint: -32768 to +32767	11	×	C ¹
03	Actual value: -32768 to +32767	12	×	C ¹
04	Proportional gain [%], Value range: 0 to 65535	KP	×	c ¹
05	Reset time [0.1 s], Value range: 0 to 65535	TN	×	c ¹
06	Rate time [0.1 s], Value range: 0 to 65535	TV	×	C ¹
07	Scan time = Time between function block calls. Value range: 0.1s to 6553.5s. If 0 is entered as the value, the scan time will be determined by the program cycle time.	TC	×	с ¹
08	Manual manipulated variable, value range: -4096 to +4095	MV	×	C ¹
09	Manipulated variable	QV	×	
	Mode: UNI, value range: 0 to +4095 (12 bit)			
	• Mode: BIP, value range: -4096 to +4095 (13 bit)	_		

Table 85: Operand overview

1) The value can only be written if it is assigned to a constant in the program.

The data for Index 2 and 9 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte .. Data 2 – High Byte).

Table 86: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	SE1	ED ²	El ³	EP ⁴	EN ⁵
FB output Data 3	3	-	-	-	-	-	-	-	Lle
 Transfer of manual manipulated variable on status 1 Activation of D component on status 1 									
3) Activation of									
4) Activation of	P compo	nen	t on	stat	us 1				
5) Activates the	function	bloo	ck o	n sta	atus 1.				
6) Status 1 if the	e value ra	nge	of th	ne m	edium	n-voltaç	ge wa	s exce	eded
Table 87: Inde	x 1 - Moc	le							
Data 1 Ope	rating m	ode							
	manipula e. Corres 5					•			

Byte	Meaning	Value (hex), sent by	
-	-	Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	28	28
2	Instance	01 – 20	01 – 20
3	Index	→ table 88	→ table 88
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 89
	Write operation	depending on index, \rightarrow table 89	00

Signal smoothing filters: FT01 – FT32 Telegram structure

Index (hex)	Operand	Read	Write
00	Bit IO, → table 89	×	
01	Mode/Parameters	-	-
02	Input value, value range: -32768 to +32767 I1	×	c ¹
03	Recovery time [0.1 s], Value range: 0 to 65535 TG	×	c ¹
04	Proportional gain [%], Value range: 0 to 65535 KP	×	c ¹
05	Delayed output value, QV value range: -32768 to +32767	×	

Table 88: Operand overview

1) The value can only be written if it is assigned to a constant in the program.

Table 89: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		-	-	-	-	-	-	-	EN ¹

1) Activates the function block on status 1.

Receive network data: GT01 – GT32

Telegram structure

Byte	Meaning	Value (he	x), sent by				
		Master	Slave				
0	Command: Read	92	-				
	Response:						
	Read successful	-	C2				
	Command rejected	-	CO				
1	Туре	1B	1B				
2	Instance	01 – 20	01 – 20				
3	Index	→ table 9	90				
4 – 7	Data 1 – 4	00	depending on index, → table 91, 92				

Table 90:Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 91	×	
01	Mode/Parameters, → table 92	×	-
02	Output value: actual QV value from the network	×	

The data for index 2 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

 \rightarrow

Table 91: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		Ι	Ι	-	-	Ι	Ι	Ι	Q1

1) Status 1 if a new value is present that is transferred from the NET network.

Table 92:	Index 1 – Mode/Parameters (designation of PUT FB
	with data to be received)

Mode	Data 1	NET-ID ¹	
		0	NET-ID 1
		7	NET-ID 8
Parameters	Data 3	Instance ²	
		0	PT01
		31	PT32

1) Number of station transmitting the value. Possible station numbers: 01 to 08

2) Transmit FB (e.g. PT 20) of the transmitting NET station. Possible station numbers: 01 – 32

7-day time switches: HW01 - HW32

Telegram structure

Byte	Meaning	Value (he	x), sent by
		Master	Slave
0	Command: Read	92	-
	Response:		
	Read successful	-	C2
	Command rejected	-	CO
1	Туре	1C	1C
2	Instance	01 – 20	01 – 20
3	Index	→ table 9	93
4 – 7	Data 1 – 4	00	depending on index, \rightarrow table 94

Table 93: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO → table 94	×	
01	Mode/Parameters	-	-
02	Parameters \rightarrow table 95	×	
	Channel A		
03	Channel B		
04	Channel C		
05	Channel D		

Table 94: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		-	-	-	-	-	-	-	Q1

1) Status 1 if the switch-on condition is fulfilled.

The data in the following table is shown in the Motorola format although it is actually transferred in Intel format.

Table 95: Index 2 to 5, Parameter channels A to D

Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Date 2								Date 1							
ON	d4	d3	d2	d1	d0	h4	h3	h2	h1	h0	m5	m4	m3	m2	m1	m0
	Weekday Hour									Minu	ite					
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Date	e 4							Date 3							
OFF	d4	d3	d2	d1	d0	h4	h3	h2	h1	h0	m5	m4	m3	m2	m1	m0
	Weekday Hour															
	Wee	kday				Hou	r				Minu	ite				

h4 to h0: Hour (0 to 23)

d5 to d0: Weekday (0 = Sunday to 6 = Saturday)

Example

The channel A parameters of 7-day time switch HW19 are to be read.

					-	Byte	M	eanin	g			V	alue	(hex),	ser	nt b	у		
												Μ	laster	-		SI	ave		
					-	0	Command: Read						2			-			
								se: Re ful	e: Read – ul						C2				
					-	1	Ту	pe				1(С			10)		
					-	2	In	stance	è			13	3			13			
					-	3	In	dex				02	2			02			
					-	4	Da	ata 1				00	C			62			
					-	5	Da	ata 2				00	C			0B			
					-	6	Data 3						00			7B			
					-	7	Data 4						00			25	Ì		
Bit	7	6	5	4	3	2	1	0	7	6	5		4	3	2		1	0	
	Dat	e 2 = (0B _{hex}						Dat	e 1 = (62 _{he}	hex							
ON	0	0	0	0	1	0	1	1	0	1	1		0	0	0		1	0	
	Wee	ekday				Ηοι	ır				Mi	Minute							
Switch-o Weekda Hour = 0 Minute =	y = 0 D _{hex}	1 _{hex} 130	0 hou	rs															
Bit	7	6	5	4	3	2	1	0	7	6	5		4	3	2		1	0	
	Dat	e 4 = 2	25 _{hex}						Dat	e 3 = ⁻	7Bhe	ex							
OFF	0	0	1	0	0	1	0	1	0	1	1		1	1	0		1	1	
	Wee	ekday				Ηοι	ır				Mi	Minute							
Switch-o Weekda			Thurs	dav															

$$\label{eq:Weekday} \begin{split} Weekday &= 04_{hex} \ .. \ Thursday \\ Hour &= 15_{hex} \ .. \ 2100 \ hours \\ Minute &= 59_{hex} \ .. \ 34 \ minutes \end{split}$$

Year time switches: HY01 – HY32

Byte	Meaning	Value (he	k), sent by			
		Master	Slave			
0	Command: Read	92	-			
	Response:					
	Read successful	-	C2			
	Command rejected	-	CO			
1	Туре	1D	1D			
2	Instance	01 – 20	01 – 20			
3	Index	→ table 9	6			
4 – 7	Data 1 – 4	00	depending on index, \rightarrow table 97			

Table O/	Onerend evendeur
Table 96:	Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO → table 97	×	
01	Mode/Parameters	-	-
02	Parameters \rightarrow table 98	×	
	Channel A		
03	Channel B		
04	Channel C		
05	Channel D		

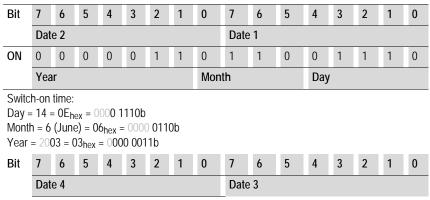
Table 97: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		-	-	-	-	-	Ι	Ι	Q1

1) Status 1 if the switch-on condition is fulfilled.

The data in the following table is shown in the Motorola format although it is actually transferred in Intel format.

Table 98: Index 2 to 5, parameter channels A to D


Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Date 2							Date 1								
ON	у6	у5	y4	у3	y2	у1	у0	m3	m2	m1	m0	d4	d3	d2	d1	d0
	Yea	r						Mon	th			Day				
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Date	e 4							Date	3						
OFF	y6	у5	y4	у3	y2	у1	у0	m3	m2	m1	m0	d4	d3	d2	d1	d0
	Year					Mon	Ionth Day									

d4 ... d0: Day (1 .. 31), m3 ... m0: Month (1 .. 12), y6 ... y0: Year (0: 2000 .. 99: 2099)

Example

The channel A parameters of year time switch HY14 are to be written.

Index 2 – 5, Parameter channels A – D

F:T•N

Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Date 2						Date 1									
OFF	y6	у5	y4	у3	y2	у1	y0	m3	m2	m1	m0	d4	d3	d2	d1	d0
	Yea	r						Mon	th			Day				

Index 2 – 5, Parameter channels A – D

Switch-off time:

 $Day = 3 = 03_{hex} = 0000\ 0011b$

Month = 10 (October) = 0A_{hex} = 0000 1010b

Year = $2012 = 0C_{hex} = 0000 \ 1100b$

Resulting telegram:

Byte	Meaning	Value (hex), set	nt by
		Master	Slave
0	Command: Write	B2	-
	Response: Write successful	-	C1
1	Туре	1D	1D
2	Instance	0E	0E
3	Index	02	02
4	Data 1	8E	00
5	Data 2	06	00
6	Data 3	43	00
7	Data 4	19	00

Value scaling: L	S01 – LS32
------------------	------------

Byte	Meaning	Value (hex), sent by	1
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	29	29
2	Instance	01 – 20	01 – 20
3	Index	→ table 99	→ table 99
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 100
	Write operation	depending on index, → table 100	

Index (hex)	Operand		Read	Write
00	Bit IO, → table 100		×	
01	Mode/Parameters		-	-
02	Input value, value range: 32 bit	11	×	C ¹
03	Interpolation point 1, X coordinate, value range: 32 bit	X1	×	c ¹
04	Interpolation point 1, Y coordinate, value range: 32 bit	Y1	×	c ¹
05	Interpolation point 2, X coordinate, value range: 32 bit	X2	×	c ¹
06	Interpolation point 2, Y coordinate, value range: 32 bit	Y2	×	c ¹
07	Output value: contains the scaled input value	QV	×	

Table 99: Operand overview

1) The value can only be written if it is assigned to a constant in the program.

Table 100: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		-	-	-	-	-	-	-	EN ¹

1) Activates the function block on status 1.

Master reset: MR01 - MR32

Byte	Meaning	Value (he	x), sent by
		Master	Slave
0	Command: Read	92	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0
1	Туре	0F	OF
2	Instance	01 – 20	01 – 20
3	Index		
	Bit IO	00	00
	Mode	01	01
4 – 7	Data 1 – 4	00	depending on index, → table 101, 102

Table 101: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	T1
FB output Data 3		-	-	-	-	-	-	-	Q12

 Trigger coil. The appropriate Reset is executed if the coil is triggered (with a rising edge).

2) Status 1 if the trigger coil MR..T is 1.

Table 102: Index 1 - Mode

Data 1 (hex)		
00	Q	Outputs Q, *Q, S, *S, *SN, QA01 are reset to 0. * depending on the NET-ID
01	Μ	The marker range MD01 to MD48 is reset to 0.
02	ALL	Has an effect on Q and M.

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	2A	2A
2	Instance	01 – 20	01 – 20
3	Index	→ table 103	→ table 103
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 104, 105
	Write operation	depending on index, → table 104, 105	00

Numerical converters: NC01 - NC32

Index (hex)	Operand	Read	Write
00	Bit IO, → table 104	×	
01	Mode, → table 105	×	
02	Input value: I1 operand to be converted	×	c ¹
03	Output value: QV contains the conversion result	×	

Table 103: Operand overview

 The value can only be written if it is assigned to a constant in the program.

The data for Index 2 and 3 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte .. Data 2 – High Byte).

Table 104: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		-	-	-	-	-	-	-	EN ¹

1) Activates the function block on status 1.

Table 105: Index 1 - Mode

Data 1 (hex)		
00	BCD	Converts a BCD coded decimal value to an integer value.
01	BIN	Converts an integer value to a BCD coded decimal value.

	Telegran Structure	, ,	
Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	1E	1E
2	Instance	01 – 04	01 – 04
3	Index	→ table 106	→ table 106
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 107
	Write operation	depending on index, → table 107	00

Operating hours counters: OT01 – OT04 Telegram structure

Index (hex)	Operand	R	Read	Write
00	Bit IO, → table 107	>	<	
01	Mode/Parameters	-		-
02	Upper threshold value I1	>	<	c ¹
03	Actual value of operating QV hours counter	>	<	

Table 106: Operand overview

1) The value can only be written if it is assigned to a constant in the program.

Table 107: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	RE ¹	EN ²
FB output Data 3		-	-	-	-	-	-	-	Q1 ³

1) Reset coil: Status 1 resets the counter actual value to zero.

2) Enable coil

3) Status 1 if the setpoint was reached (greater than/equal to)

The data for index 2 and 3 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Transmit network data: PT01 – PT32

Telegram structure

Byte	Meaning	Value (he)	<), sent by			
		Master	Slave			
0	Command: Read	92	-			
	Response:					
	Read successful	-	C2			
	Command rejected	-	CO			
1	Туре	1F	1F			
2	Instance	01 – 20	01 – 20			
3	Index	→ table 108				
4 – 7	Data 1 – 4	00	depending on index, → table 109			

Table 108:Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 109	×	
01	Mode/Parameters	-	-
02	Input value: Setpoint that I1 it transmitted to the NET network	×	

The data for index 2 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

 \rightarrow

Table 109: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	T1
FB output Data 3		-	-	-	-	-	-	-	Q12

1) Trigger coil. The value is provided on the NET if the coil is triggered (with a rising edge).

2) Status 1 if the trigger coil PT..T_ is also 1.

Byte	Meaning	Value (hex), sent by	1
5	3	Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	2B	2B
2	Instance	01 – 02	01 – 02
3	Index	→ table 110	→ table 110
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 111
	Write operation	depending on index, → table 111	00

Pulse width modulation: PW01 – PW02

Table 110: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, \rightarrow table 111	×	
01	Mode/Parameters	-	-
02	Manipulated variable, value range: 0 to 4095 (12 bit) SV	×	C ¹
03	Period duration [ms], Value range: 0 to 65535 PD	×	C ¹
04	Minimum on duration [ms], Value range: 0 to 65535 ME	×	C ¹

1) The value can only be written if it is assigned to a constant in the program.

Table 111: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	EN ¹
FB output Data 3		-	-	-	-	-	-	-	E1 ²
1) Activates the function block on status 1									

1) Activates the function block on status 1.

2) Status 1 if below the minimum on duration or minimum off duration

Synchronize clock: SC01

Telegram structure

Byte	Meaning	Value (hex), sent by				
		Master	Slave			
0	Command: Read	92	-			
	Response:					
	Read successful	-	C2			
	Command rejected	-	CO			
1	Туре	20	20			
2	Instance	01	01			
3	Index	→ table 1	12			
4 – 7	Data 1 – 4	00	depending on index, → table 113			

Table 112: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 113	×	
01	Mode/Parameters	-	-

Table 113: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	T1
FB output Data 3		-	-	-	-	-	-	-	Q1 ²

 Trigger coil. If the coil is triggered (rising edge), the current date, weekday and time of the transmitting station are automatically sent to the NET network.

2) Status 1 if the trigger coil SC01T_ is also 1.

Byte	Meaning	Value (hex), sent by					
		Master	Slave				
0	Command:						
	Read	92	-				
	Write	B2	-				
	Response:						
	Read successful	-	C2				
	Write successful	-	C1				
	Command rejected	-	CO				
1	Туре	2C	2C				
2	Instance	01	01				
3	Index	→ table 114	→ table 114				
4 – 7	Data 1 – 4						
	Read operation	00	depending on index, → table 115				
	Write operation	depending on index, → table 115	00				

Set cycle time: ST01

Index (hex)	Operand	Read	Write
00	Bit IO, → table 115	×	
01	Mode/Parameters	-	-
02	Cycle time in ms, I1 value range: 0 – 1000	×	C ¹

Table 114: Operand overview

1) The value can only be written if it is assigned to a constant in the program.

Table 115: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		-	-	-	-	-	-	-	EN ¹

1) Activates the function block on status 1.

	Telegram structure							
Byte	Meaning	Value (hex), sent by						
		Master	Slave					
0	Command:							
	Read	92	-					
	Write	B2	-					
	Response:							
	Read successful	-	C2					
	Write successful	-	C1					
	Command rejected	-	CO					
1	Туре	21	21					
2	Instance	01 – 20	01 – 20					
3	Index	→ table 116	→ table 116					
4 – 7	Data 1 – 4							
	Read operation	00	depending on index, → table 117, 118					
	Write operation	depending on index, → table 117, 118						

Timing relays: T01 – T32

Index (hex)	Operand		Read	Write
00	Bit IO, → table 117		×	
01	Mode/Parameters, → table 118		×	
02	Setpoint 1: Time setpoint 1	11	×	C ¹
03	Setpoint 2: Time setpoint 2 (with timing relay with 2 setpoints)	12	×	C ¹
04	Actual value: Time elapsed in RUN mode	QV	×	

Table 116: Operand overview

1) The value can only be written if it is assigned to a constant in the program.

The data for index 2 to 4 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 117: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	ST1	EN ²	RE ³
FB output Data 3		-	-	-	-	-	-	I	Q14

1) Stop, the timing relay is stopped (Stop coil)

2) Enable, the timing relay is started (trigger coil)

3) Reset, the timing relay is reset (reset coil)

4) Switch contact

Mode	Data 1	Operating mode			
	0	On-delayed			
	1	On-delayed with random setpoint			
	2	Off-delayed			
	3	Off-delayed with random setpoint			
	4	On and off delayed (two time setpoints)			
	5	On and off delayed each with random setpoint (two time setpoints)			
	6	Impulse transmitters			
	7	Flashing relay (two time setpoints)			
	8	Off-delayed, retriggerable (not used)			
	9	Off-delayed with random setpoint, retriggerable (not used)			
Para- Data 3		Operating mode			
meters	0	S (milliseconds)			
	1	M:S (seconds)			
	2	H:M (minutes)			

Table 118: Index 1 - Mode/Parameters

Value limitation:	VC01	- VC32
-------------------	------	--------

Byte	Meaning	Value (hex), sent by						
		Master	Slave					
0	Command:							
	Read	92	-					
	Write	B2	-					
	Response:							
	Read successful	-	C2					
	Write successful	-	C1					
	Command rejected	-	CO					
1	Туре	2D	2D					
2	Instance	01 – 20	01 – 20					
3	Index	→ table 119	→ table 119					
4 – 7	Data 1 – 4							
	Read operation	00	depending on index, → table 120					
	Write operation	depending on index, → table 120	00					

Index (hex)	Operand		Read	Write
00	Bit IO, → table 120		×	
01	Mode/Parameters		-	-
02	Input value	11	×	C ¹
03	Upper limit value	SH	×	C ¹
04	Lower limit value	SL	×	C ¹
05	Output value: outputs the value present at input I1 within the set limits.	QV	×	

Table 119: Operand overview

1) The value can only be written if it is assigned to a constant in the program.

Table 120: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		-	-	-	-	-	-	-	EN ¹

1) Activates the function block on status 1.

Analysis – error codes via	The EZ800/EZD basic unit will return a defined error code in
EZ-LINK	the event of an incorrectly selected operating mode or an
	invalid telegram. The error code transferred has the following

Telegram structure

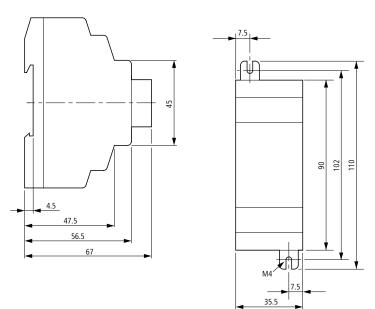
structure:

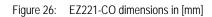
Byte	Meaning	Slave transmits (value hex)
0	Response	
	Command rejected	C0
1	Туре	
2	Instance	
3	Index	
4	Error code	→ table 121
5 – 7	Data 2 – 4	

Error code	Description
0x00	No error
0x03	Formal error in the response related to type, instance or index
0x04	No communication possible (Timeout)
0x05	DP module has only transmitted 0xC0 (EZ800/EZD).
0x45	The value selected by Type and Index must not be overwritten (Bit IO, Mode/Parameters or output value).
0x46	The value selected by Type and Index is not assigned to a constant and cannot therefore be written.
0x9E	Access to the FB data not possible (program download active).
0x9F	Type is invalid (no defined FB, depending also on the version of the addressed device).
0xA0	FB selected by Type and Index does not exist in the program.
0xA1	Index related to the specified FB type is invalid.

Appendix

What happens if? RUN LED		
Status of the RUN LED	Possible cause	To correct or avoid error
OFF	The EZ221-CO is either switched off or is currently being reset.	Switch on the EZ221-CO and supply with mains voltage.
Flickering	Auto baud recognition is currently busy (LED flickers, alternating with the ERR LED).	Check the communication of the master PLC or the bus.
Single flash	The device is in STOPPED state.	Change the status of NMT (network
Flashing	The device is in PRE-OPERATIONAL state.	management), see Section 4.3
ON	The device is in OPERATIONAL state.	


Error LED		
Status of the error LED	Possible cause	To correct or avoid error
OFF	The EZ221-CO is operating error-free. If the RUN LED is also off, the EZ221-CO is either switched off or is currently being reset.	Switch on the power supply.
Single flash	At least one of the error counters of the CANopen PLC has either reached or exceeded the Warning Limit. Too many errors have occurred on the CANopen bus.	Check for external interference on the bus. EMC problems – is the shielding properly terminated? Is the correct baud rate set at the other nodes?
Flickering	Auto baud rate recognition is currently busy (flickers alternating with the RUN LED).	Check the communication of the master PLC or the bus.
Flashes twice	A protective Guard Event or a Heartbeat Event has occurred.	Check configuration data.
ON	The CANopen PLC has changed to BUS-OFF state.	Verify the correct setting of the NODE ID.


Technical Data		
General		
Standards and regulations		EN 61000-6-1; EN 61000-6-2; EN 61000-6-3; EN 61000-6-4, IEC 60068-2-27, IEC 50178
Dimensions (W \times H \times D)	mm	35.5 × 90 × 56.5
Weight	g	150
Mounting		DIN 50022 rail, 35 mm Screw fixing with fixing bracket EZB4-101-GF1 (accessories)
Climatic environmental conditions (Cold to IEC 600 Heat to IEC 60068-2-2)	68-2-1,	
Ambient temperature Installed horizontally/vertically	°C	-25 to +55
Condensation		Prevent condensation with suitable measures
Storage/transport temperature	°C	-40 to +70
Relative humidity (IEC 60068-2-30), no moisture condensation	%	5 to 95
Air pressure (operation)	hPa	795 to 1080
Corrosion resistance (IEC 60068-2-42, IEC 60068-2- 43)		$\begin{array}{l} SO_2 \; 10 \; cm^3 /m^3, 4 \; days \\ H_2S \; \; 1 \; cm^3 /m^3, 4 \; days \end{array}$
Ambient mechanical conditions		
Pollution degree		2
Degree of protection (EN 50178, IEC 60529, VBG4)		IP20
Vibration (IEC 60068-2-6)		
constant amplitude 0.15 mm	Hz	10 to 57
Constant acceleration 2 g	Hz	57 to 150
Shocks (IEC 60068-2-27) semi-sinusoidal 15 g/11 ms	Shocks	18
Drop (IEC 60068-2-31) height	mm	50
Free fall, when packed (IEC 60068-2-32)	m	1

Electromagnetic compatibility (EMC)		
Electrostatic discharge (ESD), (IEC/EN 61000-4-2, severity level 3)		
Air discharge	kV	8
Contact discharge	kV	6
Electromagnetic fields RFI), (IEC/EN 61000-3	V/m	10
Radio interference suppression (EN 55011, EN 55022)	, class	В
Burst (IEC/EN 61000-4-4, severity level 3)		
Power cables	kV	2
Signal cables	kV	2
High-energy pulses (surge) of EZ AC current (IEC/ EN 61000-4-5), power cable symmetrical	kV	1
High-energy pulses (surge) of EZ DC current (IEC/ EN 61 000-4-5, severity level 2), power cable symmetrical	kV	0.5
Line-conducted interference (IEC/EN 61000-4-6)	V	10
Dielectric strength		
Measurement of the clearance and creepage distance		EN 50178, UL508, CSA C22.2 No. 142
Dielectric strength		EN 50 178
Tools and cable cross-sections		
Conductor cross-sections		
Solid, minimum to maximum	mm ²	0.2 to 4
	AWG	22 to 12
Flexible with ferrule, minimum to maximum	mm ²	0.2 to 2.5
	AWG	22 to 12
Slot-head screwdriver, width	mm	3.5 × 0.8
Tightening torque	N/m	0.5

Power supply		
Rated voltage		-
Rated value	V DC	24 (–15, +20)
Permissible range	V DC	20.4 to 28.8
Residual ripple	%	< 5
Input current at 24 V DC, typical	mA	200
Voltage dips, IEC/EN 61131-2	ms	10
Power dissipation at 24 V DC, typical	W	4.8
LEDs		
Module Status LED MS	Color	Green/red
Network Status LED NS	Color	Green/red
CANopen		
Device connection		8-pin RJ45 socket
Electrical isolation		Bus to power supply (basic) Bus and power supply to EZ/EZD basic unit (safe isolation)
Function		CANopen slave
Interface		CANopen (CAN)
Bus protocol		CANopen
Auto baud recognition max.	kbps	1000
Bus termination resistors		Separate installation at the bus possible
Bus addresses, accessible via EZ basic unit with display or EZSoft		1 to 127
Services		
Module inputs		All data S1 to S8
Module outputs		All data R1 to R16
Module control commands		Read/Write Time, day, summer/winter time All parameters of the EZ/EZD functions

Glossary

	This glossary refers to the topics related to CANopen.
Access Type	Access rights to an object.
Acknowledge	Acknowledgement returned by the receiving station after having received a signal.
Active metallic component	Conductor or conductive component that is live when in operation.
Address	Number, for example, for identifying a memory location, a system or a module within a network.
Addressing	Assignment or setting of an address such as for a module in a network.
Analog	Value, such as voltage, that is infinitely variable and proportional. Analog signals can acquire any value within specific limits.
Arbitration	A bus access mechanism used by CANopen.
Auto Baud Recognition	Automatic recognition of the communication speed in a bus system, when at least two stations communicate or one station transmits messages across the communication bus.
Automation device	I/O controlling device that is interconnected to a system process. Programmable controllers (PLCs) are a special group of automation devices.
Basic CAN	Concept for the implementation of a CAN controller. All CAN messages are stored in an intermediate Tx and Rx buffer, that is, without causing high load on the host controller that has to evaluate all messages.
Baud	Unit for the data transfer rate. One baud is equivalent to the transmission of one bit per second (bps).
Baud rate	Unit of measure of the data transmission speed in bit/s.
Bidirectional	Operation in both directions.
Bit	Abbreviation for the term "binary digit". Represents the smallest information unit of a binary system. Its significance can be 1 or 0 (Yes/No decision).

Bit Stuffing	Method used in CAN: After a sequence of five bits of the same polarity, a "stuff bit" with reversed polarity is inserted into the current message frame.
Bridge	A bridge connects the CANopen network to the electronic modules which represent the network slaves.
Bus	Bus system for data exchange, for example between the CPU, memory and I/O. A bus can consist of several parallel segments, such as the data bus, address bus, control bus and power supply bus.
Bus cycle time	Time interval in which a master will serve all slaves or stations in a bus system, i.e. writes their outputs and reads their inputs.
Bus line	Smallest unit connected to the bus. Consists of the PLC, a module and a bus interface for the module.
Bus system	The entirety of all units which communicate across a bus.
Bus terminating resistor	Resistor at the beginning and end of a bus line for preventing disturbance caused by signal reflections and for adapting bus cables. Bus terminating resistors must always be the last unit at the end of a bus segment.
Byte	A sequence of 8 bits
CAL	CAN Application Layer. Standardized Layer 7 Protocol according to CiA DS 201 to 207.
CAN	Controller Area Network
CAN 2.0A	11-bit identifier
CAN 2.0B	29-bit identifier
CAN high-speed	Up to 1 Mbps, normally 500 kbps
CAN low speed	max. 250 kbps
CAN nodes	In a CAN system, the network slaves are also referred to as CAN nodes.
CAN Transceiver	CAN controllers are interconnected to the bus medium by means of an ISO/DIS 11898 interface. The structure of this interface is usually not formed by a discrete circuit, but rather by a CAN Transceiver chip.

CANopen	Profile families based on CAL for high-speed data exchange. CiA standardizes the communication profile in CiA-DS-301.
Capacitive coupling	Capacitive (electrical) coupling develops between two conductors carrying different potentials. Typical interference sources are, for example parallel signal cables, contactor relays and static discharge.
Change of State	In CAN: The producer automatically and immediately sends its data when the position changes.
Chassis ground	Entirety of all interconnected inactive equipment parts that do not have any contact voltage, even in the event of a fault.
CiA	CiA e. V./CAN in Automation. International CAN manufacturer and user organization.
CiA DS	CAN in Automation Draft Standard, communication profile
CiA DSP	CAN in Automation Draft Standard Proposal
CMS	CAN Based Message Specification. One of the services of the application layer in the CAN Reference Model.
СОВ	Communication Object/CAN Message. A message in the CAN network. All data to be sent via CAN are transported in COBs.
COB-ID	COB identifier. Unambiguous identification of a COB in the entire CAN network. The COB-ID determines the bus assignment priority of the COB.
Code	Data transfer format
Coding element	Two-part element for the unambiguous allocation of electronic and basic module.
Command modules	Command-capable modules are modules with an internal memory that are capable of executing particular commands (such as output substitute values).
Common potential	Electrical interconnection of the reference potentials of the control and load circuit of I/O modules.
Communication Profile	Here: CANopen communication profile. Described in the CiA Draft Standard CiA-DS-301.
Configuring	Systematic arrangement of the I/O modules of a station.

Const	Constant object. The value is read-only and does not change during runtime. Example: Device Software Version.
CPU	Abbreviation for "Central Processing Unit". Central unit for data processing, which represents the core element of a computer.
CRC	Cyclic Redundancy Check: CAN data integrity check routine with low residual error probability. Also used in other areas of data transfer.
CSA certification	Canadian certification (Canadian Standards Association)
CSMA	Carrier Sense Multiple Access. Bus access routine used in CAN. Each node can independently access the bus as soon as the bus is free.
Data Frame	CAN message frame used by a transmitter to broadcast data to several receivers.
Data request telegram	CAN remote transmission request frame, which a network node transmits to another node.
DBT	Distributor. One of the services of the application layer in the CAN Reference Model. Used for the configuration of layers in the CAN Reference Model. The assignment of COB-IDs to the COBs used by CMS represents a DBT task.
DBT master	Special CAN node. Its task is to assign and manage the COB-IDs in a CAL or CANopen network.
DBT slave	All CAN nodes assigned a COB-ID by the DBT master.
Device Profile	Here: CANopen Device Profile. Described in CiA Draft Standards CiA-DS-401 ff.
Digital	Represents a value that can acquire only definite states within a finite set, e.g. a voltage. Mostly defined as "0" and "1".
DIN	Abbreviation for "Deutsches Institut für Normungen e. V." (German Institute for Standardization).
Download	The download of configuration data, parameters or programs to a CAN node.
Dual Code	Natural binary code. Frequently used code for absolute measurement systems.

Earthing strip	Flexible conductor, mostly braided. Interconnects inactive parts of equipment, e.g. the doors of a control panel and the switch cabinet body.
EDS	Electronic Data Sheet: File containing device-specific parameter definitions (provided by the manufacturer of CANopen or DeviceNet devices)
EEPROM	Abbreviation for "Electrically Erasable Programmable Read-only.
EIA	Abbreviation for "Electronic Industries, USA".
Electrical equipment	Comprises all equipment used for the generation, conversion, transfer, distribution and application of electrical energy, e.g. power lines, cables, machines, controllers.
EMC	Abbreviation for "Electromagnetic Compatibility". The ability of electrical equipment to function trouble-free within a particular environment without a negative effect on the environment concerned.
EN	Abbreviation for "European Norm".
Equipotential bonding	Adaptation of the electrical level of the body of electrical equipment and auxiliary conductive bodies by means of an electrical connection.
ESD	Abbreviation for "Electrostatic Discharge".
Fault Mode	Determines the mode of reaction to errors. When this bit is set for an output, this output will be set to the value declared in its fault state parameter.
Field supply	Voltage supply to field devices as well as signal voltage.
Fieldbus	Data network on the sensor/actuator level. The fieldbus interconnects the devices at field level. Characteristic feature of the fieldbus is their highly reliable transfer of signals and real-time response.
Galvanic coupling	A galvanic coupling occurs when two circuits use the same cable. Typical sources of interference are, for example, starting motors, static discharges, clocked devices, and a potential difference between the housing of components and the common power supply.

GND	Abbreviation for "GROUND" (0 potential).
Ground	In electrical engineering the name for conductive grounding with an electrical potential at any point equal to zero. In the environment of grounding devices, the electrical ground potential may not equal zero. This is called a "reference ground".
Ground (verb)	Represents the connection of an electrically conductive component to the equipotential earth via a grounding device.
Grounding device	One or several components that have a direct and good contact with the ground.
Guard Identifier	Guarding protocol identifier used for node monitoring. The NMT master here transmits an RTR to the monitored slaves, requesting it to return its current status.
Guard Time	Node monitoring time. Configurable time utilized for monitoring the CAN nodes. After this Guard Time, the NMT master transmits an RTR frame including the Guard Identifier to the corresponding NMT slave requesting it to return its current status data.
Guarding	Node monitoring performed by means of the Guarding protocol.
Hexadecimal	Number system with base 16. Counting from 0 to 9 and then with the letters A, B, C, D, E and F.
Ι/Ο	Abbreviation for "Input/Output".
Identifier	Frame identifier. Standard CAN uses 11-bit, Extended CAN 29-bit identifiers.
Impedance	Apparent resistance that a component or circuit of several components has for an alternating current at a particular frequency.
Inactive metal parts	Conductive parts that cannot be touched and which are insulated from active metal parts. They can, however, carry voltage in the event of a fault.

Index	The index (in arrays and records) and the subindex specify an object address that conforms with CANopen standard. This address represents an index in the object dictionary. Only an index is output for simple variables. Array structures have subindexes which are appended comma-separated to the index. Example: [1800,01] = index 1800, subindex 1.
Inductive coupling	Inductive (magnetic) coupling occurs between two current carrying conductors. The magnetism produced by the currents induces an interference voltage. Typical interference sources are, for example transformers, motors, mains cables installed parallel and RF signal cables.
Inhibit Time	Time interval during which a PDO may not be transmitted again, in order to avoid excess load on the network.
Life Time	Life Time/node monitoring time. Configurable time utilized for monitoring the CAN nodes. The CAN node to be monitored expects at least one Guarding message within this Life Time.
Lightning protection	Represents all measures for preventing system damage due to overvoltage caused by lightning strike.
LMT	Layer Management. One of the services of the application layer (CAL) in the CAN Reference Model. Described in the CiA Draft Standard CiA-DS-205. It contains the so-called layer-specific management functions. These include in particular the module name and ID as well as the timing parameters of the physical transmission layer, i.e. the baud rate of the CAN nodes.
LMT master	In the LMT model, this CAN node is assigned the task of configuring the LMT parameters of the other CAN nodes.
LMT slave	CAN node that communicates in the LMT model with the LMT master in a master/slave model.
Low impedance connection	Connection with low alternating-current resistance.
LSB	Abbreviation for "Least Significant Bit". Bit with the lowest value.

Mapping	All connection data, i.e. the assignment of network variables to PDOs. A PDO can transmit one or multiple network variables (see CiA DS-301). The assignment of variables to PDOs is defined in the Mapping tables. These can be addressed via the object dictionary.
Master	Station or node in a bus system that controls communication between the other stations of the bus system.
Master-slave mode	Operating mode in which a station or node of the system acts as master that controls communication on the bus.
Mode	Operating mode.
Module bus	Represents the internal bus of an XI/ON station. Used by the XI/ON modules for communication with the gateway. Independent of the fieldbus.
MSB	Abbreviation for "Most Significant Bit". Bit with the most significant value.
Multimaster Mode	Operating mode in which all stations or nodes of a system have equal rights for communicating on the bus.
NAMUR	Abbreviation for "Normen-Arbeitsgemeinschaft für Mess- und Regeltechnik" (Standards Work Group for Instruments and Controls). NAMUR proximity switches represent a special category of 2-wire proximity switches. They are highly resistant to interference and reliable due to their special construction, e.g. low internal resistance, few components and short design.
NMT	Network Management. One of the services of the application layer in the CAN Reference Model. Used in a CAN network for initialization, configuration and error handling routines.
Nodes	Network slaves.
Noise emission (EMC)	Testing procedure to EN 61000-6-4
Noise immunity (EMC)	Testing procedure to EN 61000-6-2
NV memory	Non-volatile electronic memory for electronic counters and for data backup during power loss.

Object Dictionary	Object dictionary. The object dictionary contains all objects accessible via the network in a defined sequence. These objects are accessed via a 16-bit index.
Operational	Active status of a CANopen node. In this state the node can transmit and receive PDOs, depending on the type and configuration. SDO communication is still possible.
Overhead	System management time required in the system in each transmission cycle.
Parameter assignment	Definition of parameters for individual bus slaves or their modules in the configuration software of the CANopen master.
PDO	Process Data Object. Object for the data exchange between different CAN nodes.
PLC	Abbreviation for Programmable Logic Controller.
Polling mode	A slave returns data only after it has received an RTR from the bus master.
Potential-free	Galvanic isolation between the reference potentials of the control and load circuit of I/O modules.
Pre-operational	Status of a CANopen node such as EZ221-CO after power on and automatic initialization. The node can be addressed by means of SDO, and can be set to "Operational" from this state.
Priorities	The CAN frame identifiers also determine the priorities for bus access. This allows fast bus access according to the significance of messages.
Protected against short-circuit	Property of electrical equipment. Short-circuit-proof equipment has the ability to withstand the thermal and dynamic loads that may occur at the location of installation on account of a short-circuit.
Protective conductor	A conductor required for the protection against dangerous currents, designated by the letters PE (abbreviation of "Protective Earth").

Radiated coupling	Radiated coupling occurs when an electromagnetic wave makes contact with a conductor structure. The impact of the wave induces currents and voltages. Typical interference sources are, for example ignition circuits (spark plugs, commutators of electrical motors) and transmitters (e.g. radio-operated devices), which are operated near the corresponding conductor structure.
Reference ground	Ground potential in the area of grounding devices. Unlike "ground", which always has zero potential, it may have any potential except zero.
Reference potential	Represents a reference point for measuring and/or visualizing the voltage of any connected electrical circuits.
Repeater	Amplifier for signals transferred across a bus.
Response time	In a bus system the time interval between the sending of a read job and the receipt of the response. Within an input module, it represents the time interval between the signal change at an input and its output to the bus system.
RO	Read Only. Object assigned the read only attribute.
RW	Read/Write. Object assigned read/write attributes.
RWR	Read/Write/Read. Object assigned read/write attributes. It can only be read, however when data is transferred via PDOs (as network variable).
RWW	Read/Write/Write. Object assigned read/write attributes. It can only be written, however when data is transferred via PDOs (as network variable). This corresponds, for example with a digital output that is normally write accessed, but also allows (via SDO) read back of the last entered value.
SDO	Service Data Object. Object for peer to peer communication with access to the Object Dictionary of a CAN node.
SDO Manager	CANopen manager/master that can access all devices via SDO and of which several may exist in complex or large plants (e.g. for distributed tasks).
Serial	Describes an information transfer technique. Data is transferred in a bit-stream across the cables.

Shield	Term that describes the conductive covering of cables, cubicles and cabinets.
Shielding	Refers to all measures and equipment used to connect system parts to the shield.
Slave	Station in a bus system that is subordinate to the master.
Station	Function unit or module, consisting of several elements.
Subindex	See Index.
Sync	The SYNC object is a frame a station broadcasts periodically. Can be used to transfer device data at defined time intervals. PDOs that should respond to these frames are assigned the synchronous Transmission Type attribute (see Transmission Type).
Topology	Geometric structure of a network or circuit arrangement.
Transmission Type	Transmission characteristics of a PDO.
UART	Abbreviation for "Universal Asynchronous Receiver/ Transmitter". A "UART" is a logic circuit used for converting an asynchronous serial data sequence into a bit-parallel data sequence or vice versa.
Unidirectional	Working in one direction.
WO	Write Only. Object with write access only.

Index

	7-day time switch EZ700 EZ800/EZD	187
A	Address range Address setting On the basic unit	26 26
	With EZSoft With special configuration tools	
	Analog comparators EZ700 EZ700, read status	
	EZ800/EZD	
	EŽ700, read status EZ800/EZD, read status	
	Analog output EZ800/EZD, read status Arithmetic function block	
	EZ800/EZD	157
В	Baud rate recognition, automatic Bit array	
	Block compare EZ800/EZD	
	Block transfer EZ800/EZD	161
	Boolean operation EZ800/EZD Bus terminating resistors	
С	CANopen Din accimment	
	Pin assignment Commissioning Communication objects	25
	Communication parameters Communication status	45
	Comparators EZ800/EZD Connecting	173
	CANopen	21

	EZ221-CO to basic unit19 Power supply	
	Connecting the basic unit	
	EZ700	
	Counter relays EZ700	
	Counters EZ700, read status	
	Cycle time	
D	Data exchange, PDO73 Data function block	
	EZ800/EZD	
	Device profile	
	EZ800/EZD, image data	
	Digital inputs EZ700, read status	
	EZ800/EZD, read status	
	EZ700, read status	
	EZ800/EZD, read status	
	Direct data exchange	
E	EDS file	
	Electrical isolation	
	Emergency 55	
	Emergency object	
	Emergencý protocol	
	EZ700 126	
	EZ800/EZD	
	Error LED	
	Error messages	

	Event Timed PDOs35
F	Frequency counters EZ800/EZD
Η	High-speed counter EZ800/EZD 169
I	Image dataGeneral information87Overview EZ70088Overview of EZ800/EZD133Improper use17Incremental encoder counters171EZ800/EZD171Inhibit Time35Initial power up25Initialization39Input data, definition73Inputs of EZ-LINK103EZ800/EZD, read status103EZ800/EZD, read status149Inputs, network stations140Invalid operating mode126, 213Invalid telegram126, 213
L	Layer Setting Service44LEDs28Local analog output28EZ800/EZD, read status146Local inputs92EZ700, read status92EZ800/EZD, read status138Local outputs138EZ700, read status102
М	Manufacturer-specific objects
Inform	nation visity www.EatonElectrical.com

	Master reset EZ700)
N	Network management, CANopen38NMT service41Node Guarding42Node monitoring42Numerical converter197EZ800/EZD197	2
0	Object dictionary 45 Operating hours counter 199 Operating hours counters 116 Operating mode 116 Read 78 Write 74 Operating mode 74 Operating mode 74 Operating mode, invalid 126, 213 Operational 39 Output data, definition 73 Outputs of EZ-LINK 103 EZ800/EZD, read status 103 EZ800/EZD, read status 149 Outputs S1 to S8, read status 78 Outputs, local and network stations 147	
P	P buttons EZ700, read status 100 EZ800/EZD, read status 144 PDO 73 PDO mapping 34, 36 PDO protocol 59 PID controllers EZ800/EZD 180 Pin assignment, CANopen 21 Pre-operational 39 Prepared 40 Process data objects 34 Protocols, CANopen 59 Pulse width modulation EZ800/EZD 203	

EZ700	R	Read/write date
Read/write time EZ700 .82, 128 Receive data, network stations EZ800/EZD .185 EZ800/EZD, read status .151 Receive network EZ800/EZD .185 Receive PDO .34 Resetting, EZ/EZD inputs/outputs .74 Response time of the basic unit .31 Restoring, object dictionary entries .43 RUN LED .30, 215 S Saving, object dictionary entries SDO Control commands for EZ700 Control commands for EZ800/EZD .201 Service data objects .33 Set cycle time .2800/EZD EZ800/EZD .206 Setting the node ID .44 Setting the slave address .26 Setting the slave address .26 Setting the slave address .26 Setting tresetting inputs R1 to R8 .76 State .78 Writing inputs R1 to R8 .78 Stations, read inpu		
EZ70082, 128Receive data, network stationsEZ800/EZDEZ800/EZD, read status151Receive networkEZ800/EZDEZ800/EZD185Receive PDO34Resetting, EZ/EZD inputs/outputs74Response time of the basic unit31Restoring, object dictionary entries43RUN LED30, 215SSaving, object dictionary entries43SDOControl commands for EZ70081Control commands for EZ800/EZD127Send network dataEZ800/EZDEZ800/EZD201Service data objects33Set cycle time24EZ800/EZD206Setting the node ID44Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting/resetting inputs R1 to R876Signal smoothing filter15Signal smoothing filter28Summer time28Summer time28Summer time28Summer time24Synchronization object37Synchronize clock205		
Receive data, network stations 185 EZ800/EZD, read status 151 Receive network 151 Receive PDO 34 Resetting, EZ/EZD inputs/outputs 74 Response time of the basic unit 31 Restoring, object dictionary entries 43 RUN LED 30, 215 S Saving, object dictionary entries SDO Control commands for EZ700 Control commands for EZ800/EZD 127 Send network data EZ800/EZD EZ800/EZD 201 Service data objects 33 Set cycle time 206 Setting the node ID 44 Setting the slave address 26 Setting the slave address 26 Setting, EZ/EZD inputs/outputs 74 Setting inputs R1 to R8 76 Setup of the unit 15 Signal smoothing filter 28 EZ800/EZD 183 State 76 Restions, read input status 140 Status LED 28 Summer time 2800/EZD 28		F7700
EZ800/EZD185EZ800/EZD, read status151Receive network185Receive PDO34Resetting, EZ/EZD inputs/outputs74Response time of the basic unit31Restoring, object dictionary entries43RUN LED30, 215SSaving, object dictionary entries43SDOControl commands for EZ70081Control commands for EZ800/EZD127Send network data201Service data objects33Set cycle time206Setting the node ID44Setting the slave address26Setting the slave address26Setting the slave address26Setting fresetting inputs R1 to R876Signal smoothing filter15Signal smoothing filter28EZ800/EZD28Summer time28Summer time28Summer time28Summer time28Summer time270Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time270EZ800/EZD129Switching rule34Synchronization object37Synchronizetion object205		Receive data network stations
EZ800/EZD, read status151Receive networkEZ800/EZDEZ800/EZD185Receive PDO34Resetting, EZ/EZD inputs/outputs74Response time of the basic unit31Restoring, object dictionary entries43RUN LED30, 215SSaving, object dictionary entries43SDOControl commands for EZ70081Control commands for EZ800/EZD127Send network dataEZ800/EZDEZ800/EZD201Service data objects33Set cycle timeEZ800/EZDEZ800/EZD206Setting the node ID44Setting the slave address26Setting the slave address26Setting the slave address26Setting fresetting inputs R1 to R876Signal smoothing filterEZ800/EZDEZ800/EZD183StateReading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time2280/EZD129Switching rule84Synchronization object37Synchronize clock205		F7800/F7D 185
Receive network 185 Receive PDO 34 Resetting, EZ/EZD inputs/outputs 74 Response time of the basic unit 31 Restoring, object dictionary entries 43 RUN LED 30, 215 S Saving, object dictionary entries 43 SDO Control commands for EZ700 81 Control commands for EZ800/EZD 127 Send network data EZ800/EZD 201 Service data objects 33 Set cycle time 206 Setting the node ID 44 Setting the slave address 26 Setting the slave address 26 Setting presetting inputs/outputs 74 Setting/resetting inputs R1 to R8 76 Setup of the unit 15 Signal smoothing filter 15 EZ800/EZD 183 State 76 Reading outputs S1 to S8 78 Writing inputs R1 to R8 76 Stations, read input status 140 Status LED 28 Summer time 2700 EZ800/E		F7800/EZD read status 151
EZ800/EZD185Receive PDO34Resetting, EZ/EZD inputs/outputs74Response time of the basic unit31Restoring, object dictionary entries43RUN LED30, 215SSaving, object dictionary entries43SDOControl commands for EZ70081Control commands for EZ800/EZD127Send network dataEZ800/EZDEZ800/EZD201Service data objects33Set cycle time226EZ800/EZD206Setting the node ID44Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting the slave address26Setting inputs R1 to R876Setup of the unit15Signal smoothing filter183EZ800/EZD183State76Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time2700EZ800/EZD129Switching rule84Synchronization object37Synchronization object37Synchronize clock205		
Receive PDO34Resetting, EZ/EZD inputs/outputs74Response time of the basic unit31Restoring, object dictionary entries43RUN LED30, 215SSaving, object dictionary entries43SDOControl commands for EZ70081Control commands for EZ800/EZD127Send network dataEZ800/EZDEZ800/EZD201Service data objects33Set cycle timeEZ800/EZDEZ800/EZD206Setting the node ID44Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting the slave address26Setting inputs R1 to R876Signal smoothing filterEZ800/EZDEZ800/EZD183State76Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28Summer time28Synchronization object37Synchronize clock205		F7800/F7D 185
Resetting, EZ/EZD inputs/outputs 74 Response time of the basic unit 31 Restoring, object dictionary entries 43 RUN LED 30, 215 S Saving, object dictionary entries 43 SDO Control commands for EZ700 81 Control commands for EZ800/EZD 127 Send network data EZ800/EZD 201 Service data objects 33 Set cycle time EZ800/EZD 206 Setting the node ID 44 Setting the slave address 26 Setting inputs R1 to R8 76 Signal smoothing filter EZ800/EZD 183 State 76 Reading outputs S1 to S8 78 Writing inputs R1 to R8 76 Status LED 28 Summer time EZ700 83		
Response time of the basic unit 31 Restoring, object dictionary entries 43 RUN LED 30, 215 S Saving, object dictionary entries 43 SDO Control commands for EZ700 81 Control commands for EZ800/EZD 127 Send network data EZ800/EZD 201 Service data objects 33 Set cycle time 206 Setting the node ID 44 Setting the slave address 26 Setting the slave address 26 Setting, EZ/EZD inputs/outputs 74 Setting file slave address 26 Setting resetting inputs R1 to R8 76 Signal smoothing filter 15 EZ800/EZD 183 State Reading outputs S1 to S8 78 Writing inputs R1 to R8 76 Stations, read input status 140 Status LED 28 Summer time 2700 83 EZ800/EZD 129 Switching rule 84 Synchronization object 37 Synchronize clock		Resetting F7/F7D inputs/outputs 74
Restoring, object dictionary entries 43 RUN LED 30, 215 S Saving, object dictionary entries 43 SDO Control commands for EZ700 81 Control commands for EZ800/EZD 127 Send network data EZ800/EZD 201 Service data objects 33 Set cycle time 206 Setting the node ID 44 Setting the slave address 26 Setting, EZ/EZD inputs/outputs 74 Setting fresetting inputs R1 to R8 76 Signal smoothing filter EZ800/EZD EZ800/EZD 183 State Reading outputs S1 to S8 78 Writing inputs R1 to R8 76 Stations, read input status 140 Status LED 28 Summer time 28 Summer time 2700 EZ800/EZD 129 Switching rule 84 Synchronization object 37 Synchronize clock 205		Response time of the basic unit 31
RUN LED 30, 215 S Saving, object dictionary entries 43 SDO Control commands for EZ700 81 Control commands for EZ800/EZD 127 Send network data EZ800/EZD 201 Service data objects 33 Set cycle time 206 Setting the node ID 44 Setting the slave address 26 Setting, EZ/EZD inputs/outputs 74 Setting/resetting inputs R1 to R8 76 Signal smoothing filter EZ800/EZD EZ800/EZD 183 State 78 Writing inputs R1 to R8 76 Stations, read input status 140 Status LED 28 Summer time 28 Summer time 2700 EZ800/EZD 129 Switching rule 84 Synchronization object 37 Synchronize clock 205		Restoring object dictionary entries 43
S Saving, object dictionary entries 43 SDO Control commands for EZ700 81 Control commands for EZ800/EZD 127 Send network data EZ800/EZD 201 Service data objects 33 Set cycle time 206 Setting the node ID 44 Setting the slave address 26 Setting the slave address 26 Setting /resetting inputs/outputs 74 Setup of the unit 15 Signal smoothing filter EZ800/EZD EZ800/EZD 183 State 78 Writing inputs R1 to R8 76 Stations, read input status 140 Status LED 28 Summer time 28 Summer time 2700 EZ800/EZD 129 Switching rule 84 Synchronization object 37 Synchronize clock 205		RUNIED 30.215
Saving, object dictionary entries 43 SDO Control commands for EZ700 81 Control commands for EZ800/EZD 127 Send network data EZ800/EZD 201 Service data objects 33 Set cycle time 206 Setting the node ID 44 Setting the slave address 26 Setting, EZ/EZD inputs/outputs 74 Setting fresetting inputs R1 to R8 76 Signal smoothing filter EZ800/EZD EZ800/EZD 183 State Reading outputs S1 to S8 Reading outputs S1 to R8 76 Stations, read input status 140 Status LED 28 Summer time 2700 EZ800/EZD 129 Switching rule 84 Synchronization object 37 Synchronize clock 205		
Saving, object dictionary entries 43 SDO Control commands for EZ700 81 Control commands for EZ800/EZD 127 Send network data EZ800/EZD 201 Service data objects 33 Set cycle time 206 Setting the node ID 44 Setting the slave address 26 Setting, EZ/EZD inputs/outputs 74 Setting fresetting inputs R1 to R8 76 Signal smoothing filter EZ800/EZD EZ800/EZD 183 State Reading outputs S1 to S8 Reading outputs S1 to R8 76 Stations, read input status 140 Status LED 28 Summer time 2700 EZ800/EZD 129 Switching rule 84 Synchronization object 37 Synchronize clock 205		
SDOSDOControl commands for EZ70081Control commands for EZ800/EZD127Send network dataEZ800/EZDEZ800/EZD201Service data objects33Set cycle time206EZ800/EZD206Setting the node ID44Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting/resetting inputs R1 to R876Setup of the unit15Signal smoothing filterEZ800/EZDEZ800/EZD183State78Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205	S	Saving object dictionary entries 43
Control commands for EZ70081Control commands for EZ800/EZD127Send network dataEZ800/EZDEZ800/EZD201Service data objects33Set cycle time206EZ800/EZD206Setting the node ID44Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting/resetting inputs R1 to R876Setup of the unit15Signal smoothing filter183EZ800/EZD183State78Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		SDO
Control commands for EZ800/EZD127Send network dataEZ800/EZDEZ800/EZD201Service data objects33Set cycle time206EZ800/EZD206Setting the node ID44Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting/resetting inputs R1 to R876Setup of the unit15Signal smoothing filterEZ800/EZDEZ800/EZD183State78Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		
Send network data201EZ800/EZD201Service data objects33Set cycle time206EZ800/EZD206Setting the node ID44Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting/resetting inputs R1 to R876Setup of the unit15Signal smoothing filter183EZ800/EZD183State78Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		
Service data objects33Set cycle time206EZ800/EZD206Setting the node ID44Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting/resetting inputs R1 to R876Setup of the unit15Signal smoothing filter183EZ800/EZD183State76Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		
Service data objects33Set cycle time206EZ800/EZD206Setting the node ID44Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting/resetting inputs R1 to R876Setup of the unit15Signal smoothing filter183EZ800/EZD183State76Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		EZ800/EZD
Set cycle time206EZ800/EZD206Setting the node ID44Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting/resetting inputs R1 to R876Setup of the unit15Signal smoothing filter183EZ800/EZD183State76Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		
ÉZ800/EZD		Set cycle time
Setting the node ID44Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting/resetting inputs R1 to R876Setup of the unit15Signal smoothing filter183EZ800/EZD183State76Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		EZ800/EZD
Setting the slave address26Setting, EZ/EZD inputs/outputs74Setting/resetting inputs R1 to R876Setup of the unit15Signal smoothing filter183EZ800/EZD183State76Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		Setting the node ID
Setting, EZ/EZD inputs/outputs74Setting/resetting inputs R1 to R876Setup of the unit15Signal smoothing filter183EZ800/EZD183State78Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		
Setting/resetting inputs R1 to R876Setup of the unit15Signal smoothing filter15EZ800/EZD183State78Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		Setting, EZ/EZD inputs/outputs
Setup of the unit15Signal smoothing filter183EZ800/EZD183State78Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ70083EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		Setting/resetting inputs R1 to R8
Signal smoothing filter183EZ800/EZD183State78Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ70083EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		Setup of the unit
EZ800/EZD183StateReading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ70083EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		Signal smoothing filter
Reading outputs S1 to S878Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ70083EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		EZ800/EZD 183
Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ70083EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		State
Writing inputs R1 to R876Stations, read input status140Status LED28Summer time28EZ70083EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		Reading outputs S1 to S8
Stations, read input status140Status LED28Summer time28EZ70083EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		Writing inputs R1 to R8
Status LED28Summer time83EZ70083EZ800/EZD129Switching rule84Synchronization object37Synchronize clock205		Stations, read input status 140
Summer time EZ700		
EZ800/EZD		
EZ800/EZD		EZ700
Switching rule		
Synchronization object		
Synchronize clock EZ800/EZD 205		Synchronization object
EZ800/EZD		Synchronize clock
		EZ800/EZD
Synchronous transfer		Synchronous transfer
System overview, CANopen		
System services		System services

Т	Telegram, invalid126, 213 Text function block
	EZ700, read status
	Text output function block EZ800/EZD 175
	Threshold value comparator EZ700, read status
	Threshold value switch EZ700110
	Time change (EZ800/EZD) 129
	Time stamp
	Timing relays EZ700 118
	EZ700, read status 105
	EZ800/EZD
	Transmission types of PDOs
	EZ800/EZD
	Transmit PDO
V	Value limitation
	EZ800/EZD 213 Value scaling
	EZ800/EZD 195
W	Winter time
	EZ700
	Wiring, EMC compliant
Y	Year time switch
	EZ700
	EZ800/EZD 190

Eaton Electrical 1000 Cherrington Parkway Moon Township, PA 15108-4312 USA Tel: 1-800-525-2000 www.EatonElectrical.com

© 2005 Eaton Corporation All Rights Reserved Printed in USA Publication No. MN05013007E May 2005