

C22 pilot devices offer clean installation, compact design and a complete

EAT•N

Powering Business Worldwide
selection of operators for virtually any industrial application.

Clean Installation.

Reduce installation time with C22's simple, central nut application. Contacts are built into the barrel eliminating separate contact blocks and lamp elements.

Compact Design.

The line features a 22 mm monoblock design with an "all in one" housing that includes contacts and lamp elements.

Complete Offering.

C22 monoblock pilot devices offer a broad selection of operators, functionality and features, exceeding what is typical for this class of device.

The C22 line features monoblock construction with built-in contacts for a clean, simple installation. The 22 mm design is compact, yet offers the same pressable area as 30 mm buttons. Choose from a broad selection of standard operators, including keyed switches and two sizes of emergency stops, both keyed and non-keyed. Laser etching of button plates is also available for custom applications.

Innovative design

C22 pilot devices are modeled after our modern M22 line. Graceful curves, clean lines and two styles of colored bezels, titanium and black, provide a distinguished look to make your panel stand out. In addition, the two lines share many common parts and accessories that make the C22 even more flexible and complete.

Rugged

C22 standard buttons have a mechanical lifespan up to five million operations. That's equivalent to performing one ON/OFF cycle every minute for over 9.5 years. They can also operate in ambient temperatures between $-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ for use in the harshest environments. Illuminated operators are all equipped with LED bulbs with life spans up to 100,000 hours.

High environmental ratings

Most front elements have a minimum IP67 (NEMA 4X, 13) environmental rating, protecting them against water immersion to one meter. Many standard operators also have the more stringent IP69K ratings, protecting them from submersion and high pressure/ temperature wash down environments.

Broad selection

The new C22 line includes a broad selection, exceeding what is typical for this class of device:

1. Flush, non-illuminated

 pushbutton - momentary and maintained. Maintained are field convertible to momentary.2. Extended, non-illuminated pushbutton - momentary and maintained. Maintained are field convertible to momentary.

3. Flush and extended

 illuminated pushbutton momentary and maintained. Maintained are field convertible to momentary.4. Pilot lights - with LED illumination.

5. Keyed two and three

 position selector switches momentary and maintained; Momentary are field convertible to maintained; 40 and 60 degree return; Eleven different keys available.6. Twist-and-Release Emergency Stops - 45 and 60 mm ; keyed and nonkeyed; Eleven different keys available. LED light ring available for high visibility in mission critical applications.

Available contact block configurations

Standard and extended pushbuttons; two position selector switches

Reduce inventories

Unique to Eaton's 22 mm pilot devices is the ability to convert a button's functionality in the field. Maintained pushbuttons can be converted to momentary with the flick of a switch, while momentary selector switches can be converted to maintained. This flexibility adds tremendous advantage over dedicatedfunction devices currently on the market. Inventories are reduced and functionality is increased.

C22 Pilot Devices			Pushbutton Actuators		Indicator Lights	Selector Switches	Keyed Operators (Inc. E-Stops)	Non-keyed Emergency Stop Actuators
			Momentary	Maintained				
General								
Standards			IEC/EN 60947 VDE 0660					
Mechanical lifespan	Operations	$\times 10^{6}$	5	1	-	1	0.1	0.05
Operating frequency	Operations/h		≤ 3600	≤ 3600	-	≤ 2000	≤ 100	≤ 300
Actuating force		N	5	5	-	-	-	50
Operating torque		Nm	-	-	-	0.3	0.5	-
Terminal screw tightening torque		Nm	0.8	0.8	0.8	0.8	0.8	0.8
Threaded ring tightening torque		Nm	2	2	2	2	2	2
Protection type			IP67, IP69K	IP67, IP69K	IP67, IP69K	IP65	IP66	IP67, IP69K
Climatic proofing			Damp heat, constant, to IEC 60068-2-78; Damp heat, cyclic, to IEC 60068-2-30					
Ambient temperature								
Open		${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & -13 \text { to } 158 \\ & (-25 \text { to } 70) \end{aligned}$	$\begin{aligned} & -13 \text { to } 158 \\ & (-25 \text { to } 70) \\ & \hline \end{aligned}$	$\begin{aligned} & -13 \text { to } 158 \\ & (-25 \text { to } 70) \end{aligned}$	$\begin{aligned} & -13 \text { to } 158 \\ & (-25 \text { to } 70) \end{aligned}$	$\begin{aligned} & -13 \text { to } 158 \\ & (-25 \text { to } 70) \\ & \hline \end{aligned}$	$\begin{aligned} & -13 \text { to } 158 \\ & (-25 \text { to } 70) \\ & \hline \end{aligned}$
Storage		${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & -22 \text { to } 176 \\ & (-30 \text { to } 80) \\ & \hline \end{aligned}$	$\begin{aligned} & -22 \text { to } 176 \\ & (-30 \text { to } 80) \\ & \hline \end{aligned}$	$\begin{aligned} & -22 \text { to } 176 \\ & (-30 \text { to } 80) \\ & \hline \end{aligned}$	$\begin{aligned} & -22 \text { to } 176 \\ & (-30 \text { to } 80) \\ & \hline \end{aligned}$	$\begin{aligned} & -22 \text { to } 176 \\ & (-30 \text { to } 80) \\ & \hline \end{aligned}$	$\begin{aligned} & -22 \text { to } 176 \\ & (-30 \text { to } 80) \\ & \hline \end{aligned}$
Mounting position			As required					
Mechanical shock resistance to IE Shock duration 11 ms, half-sinuso	$\begin{aligned} & \text { C 60068-2-27 } \\ & \text { idal } \end{aligned}$	g	30	30	30	30	30	30
Terminal capacities								
Solid		mm^{2}	$2 \mathrm{x}(0.5-1.5)$					
Flexible with ferrule		mm^{2}	$2 \mathrm{x}(0.5-1.5)$	$2 \mathrm{x}(0.5-1.5)$	$2 \mathrm{x}(0.5-1.5)$	2x (0.5-1.5)	$2 \mathrm{x}(0.5-1.5)$	$2 \mathrm{x}(0.5-1.5)$
Contacts								
Rated impulse withstand voltage	$\mathrm{U}_{\text {imp }}$	V AC	4000	4000	4000	4000	4000	4000
Rated insulation voltage	U_{i}	V	250	250	250	250	250	250
Overvoltage category / pollution d	degree		III/3	III/3	III/3	III/3	III/3	III/3
Control circuit reliability								
at $5 \mathrm{~V} \mathrm{DC} / 1 \mathrm{~mA}$	H_{F}	Fault probability	Statistically determined 1 failure per 5×10^{6} operations		-	Statistically determined 1 failure per 5×10^{6} operations		
at $17 \mathrm{~V} \mathrm{DC} / 7 \mathrm{~mA}$	H_{F}	Fault probability	NO contact: statistically determined 1 failure per 1.7×10^{7} operations NC contact: statistically determined 1 failure per 0.9×10^{7} operations		-	NO contact: statistically determined 1 failure per 1.7×10^{7} operations NC contact: statistically determined 1 failure per 0.9×10^{7} operations		
at $24 \mathrm{~V} \mathrm{DC} / 5 \mathrm{~mA}$	H_{F}	Fault probability	NO contact: statistically determined 1 failure per 1.7×10^{7} operations NC contact: statistically determined 1 failure per 0.9×10^{7} operations		-	NO contact: statistically determined 1 failure per 1.7×10^{7} operations NC contact: statistically determined 1 failure per 0.9×10^{7} operations		
Max. short-circuit protective device								
Fuse		gG/gL	10	10	-	10	10	10
Switching capacity								
Rated operational current								
AC-15								
24 V	$\mathrm{I}_{\text {e }}$	A	4	4	-	4	4	4
110 V	I_{e}	A	2	2	-	2	2	2
230 V	$\mathrm{I}_{\text {e }}$	A	1.5	1.5	-	1.5	1.5	1.5
DC-13								
24 V	$\mathrm{I}_{\text {e }}$	A	3	3	-	3	3	3
60 V	$\mathrm{I}_{\text {e }}$	A	1	1	-	1	1	1
110 V	$\mathrm{I}_{\text {e }}$	A	0.6	0.6	-	0.6	0.6	0.6
220 V	$\mathrm{I}_{\text {e }}$	A	0.3	0.3	-	0.3	0.3	0.3
Electrical lifespan								
AC-15								
230V / 0.5A	Operations	$\times 10^{6}$	0.4	0.4	-	0.4	0.4	0.4
230V / 1.0A	Operations	$\times 10^{6}$	0.6	0.6	-	0.6	0.6	0.6
Contact travel diagram								
\square Contact closed $\quad \square$ Contact ope				$\left.\right\|_{4} ^{1^{3}}$			5.5	

Eaton Corporation

Electrical Sector
1111 Superior Ave.
Cleveland, OH 44114
United States
877-ETN-CARE (877-386-2273)
Eaton.com

E:ToN
Powering Business Worldwide
© 2011 Eaton Corporation
All Rights Reserved
Printed in USA
Publication No. PA04716002E April 2011

Eaton is a registered trademark.
All other trademarks are property of their respective owners.

Follow us on social media to get the latest product and support information.
f(in

