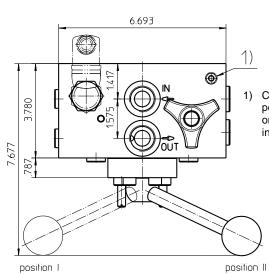
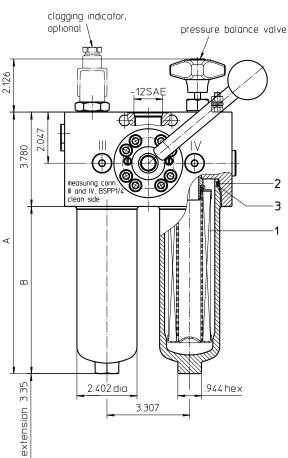

Series MDD 41-101 2900 PSI


Dimensions:

type	MDD 41	MDD 64	MDD 101				
connection	-12 SAE						
A	8.11	10.47	14.01				
В	4.33	6.69	10.23				
weight kg	31	33	37				
Volume tank	2x .06 Gal.	2x .09 Gal.	2x .14 Gal.				


Measure connections III and IV to be used for pressure relief and air bleeding respective filter side.

Position I: left filter side in operation Position II: right filter side in operation

 Connection for the potential equalization, only for application in the explosive area.

for

Dimensions: inch Designs and performance values are subject to change.

Pressure Filter, changeover Series MDD 41-101 2900 PSI

Description:

Pressure filters, change over series MDD 41-101 are suitable for operating pressure up to 2900 PSI. The pressure peaks are absorbed by a sufficient margin of safety.

Duplex filters can be maintained without interruption.

The upper part has a three-way-change-over valve which allows to change-over the flow from the dirty filter-side to the clean filter-side without interrupting the operation. The change-over procedure does not lead to a cross sectional contraction. Prior to the change-over procedure a built-in pressure balance valve equalizes the housing pressure. After change-over the pressure balance valve has to be closed again. The closed filter-side has to be air-bled by vent III respectively by vent IV. Then change filter element. After screw in the filter bowl the pressure balance has to be opened shortly and the just serviced filter-side has to be air-bled. Filter elements are available down to a filter fineness of 5 μ m(c).

Eaton filter elements are known for high intrinsic stability and an excellent filtration capability, a high dirt-retaining capacity and a long service life.

Eaton filter elements are available up to a pressure resistance of Δp 2320 PSI and a rupture strength of Δp 3625 PSI.

The internal valve is integrated into the filter head. After reaching the bypass pressure setting, the bypass valve will send unfiltered partial flow around the filter.

The reversing valve provides another level of protection for the filter element. The reverse flow will not be filtered.

Eaton filter can be used for petroleum-based fluids, HW emulsions, water glycols, most synthetic fluids and lubrication fluids. Consult factory for specific fluid applications.

Type index:

Complete filter: (ordering example)

MDD.	64.	10VG.	HR.	E.	Ρ.		UG.	4.				AE
1	2	3	4	5	6	7	8	9	10	11	12	13
ME	1 series: MDD = medium pressure filter, changeover 2 nominal size: 41, 64, 101											

- 4 filter element collapse rating:
- 30 = ∆p 435 PSI
 - HR = Δp 2320 PSI (rupture strength Δp 3625 PSI)
- 5 filter element design:
- Е = single-end open

6 sealing material:

- Ρ = Nitrile (NBR)
 - V = Viton (FPM)
- 7 filter element specification:
 - = standard
 - VA = stainless steel
 - IS06 = for HFC applications, see sheet-no. 31601
- 8 process connection:
- UG = thread connection
- 9 process connection size:
- 4 = -12 SAE

10 | filter housing specification:

- = standard
 - IS06 = for HFC applications, see sheet-no. 31605
 - IS12 = internal parts of change over armature stainless steel, see sheet-n. 41028

11 | specification pressure vessel:

- = standard (PED 2014/68/EU)
- IS20 = ASME VIII Div. 1 with ASME equivalent material, see shee-no.55217 (max. operating pressure 2320 PSI)

12 internal valve:

- = without
 - S1 = with by-pass valve ∆p 51 PSI
 - S2 = with by-pass valve ∆p 102 PSI R
 - = with reversing valve, $Q \le 18.50$ GPM

13 clogging indicator or clogging sensor:

- = without
- AOR = visual, see sheet-no. 1606
- AOC = visual, see sheet-no. 1606
- AE = visual-electric, see sheet-no. 1615
- VS5 = electronic, see sheet-no. 1619

To add an indicator/sensor to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code

Filter element: (ordering example)

01NL. (63.	10VG.	HR.	Ε.	Ρ.	-
1	2	3	4	5	6	7

- 01NL = standard filter element according to DIN 24550, T3
- 2 nominal size: 40, 63, 100
- 3 7 see type index-complete filter

Accessories:

- gauge port- and bleeder connections, see sheet-no. 1650

Technical data:

operating temperature: +14 °F to +212 °F operating medium: mineral oil, other media on request max. operating pressure: 2900 PSI 4150 PSI test pressure: max. operating pressure at IS20: 2320 PSI test pressure at IS20: 3320 bar process connection: thread connection housing material: C-steel sealing material: Nitrile (NBR) or Viton (FPM), other materials on request installation position: vertical BSPP 1/4 bleeder- and measuring connections dirt side:

Classified under the Pressure Equipment Directive 2014/68/EU for mineral oil (fluid group 2), Article 4, Para. 3. Classified under ATEX Directive 2014/34/EU according to specific application (see questionnaire sheet-no. 34279-4).

Pressure drop flow curves:

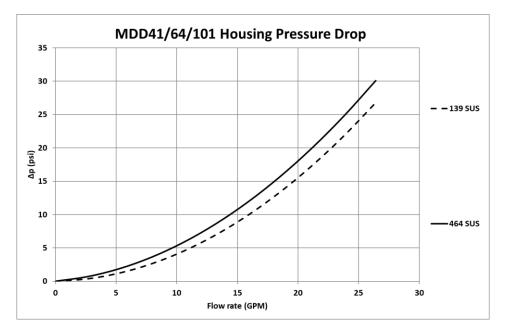
Filter calculation/sizing

The pressure drop of the assembly at a given flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

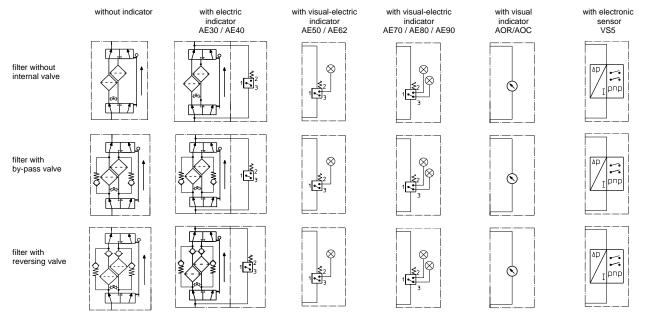
 Δp assembly = Δp housing + Δp element Δp housing = (see $\Delta p = f(Q) - characteristics)$

 $\Delta p_{element}(PSI) = Q (GPM) x \frac{MSK}{1000} \left(\frac{PSI}{GPM}\right) x v(SUS) x \frac{\rho}{0.876} \left(\frac{kg}{dm^3}\right)$

For ease of calculation our Filter Selection tool is available online at www.eaton.com/hydraulic-filter-evaluation


Material gradient coefficients (MSK) for filter elements

The material gradient coefficients in mbar/(l/min) apply to mineral oil (HLP) with a density of 0.876 kg/dm³ and a kinematic viscosity of 139 SUS (30 mm²/s). The pressure drop changes proportionally to the change in kinematic viscosity and density.


MDD	VG						
	3VG	6VG	10VG	16VG	25VG		
41	6.991	4.853	3.107	2.705	1.848		
64	4.214	2.926	1.873	1.631	1.114		
101	2.640	1.833	1.173	1.021	0.698		

<u>Ap=f(Q) – characteristic according ISO 3968</u>

The pressure drop characteristics apply to mineral oil (HLP) with a density of 0,876 kg/dm³. The pressure drop changes proportionally to the density.

Symbols:

Spare parts:

item	qty.	designation	dimension			article-no.		
		_	MDD 401 MDD 64 MDD 101					
1	2	filter element	01.NL40 01.NL63 01.NL100					
2	2	O-ring	54 x 3			304657 (NBR)	304720 (FPM)	
3	2	support ring	60 x 2,6 x 1			311	779	
4	1	O-ring	10 x 3			307285 (NBR)	311019 (FPM)	
5	1	support ring	17 x 2,05 x 1			307	286	
6	1	O-ring	32 x 3			304368 (NBR)	311020 (FPM)	

Test methods:

Filter elements are tested according to the following ISO standards:

- ISO 2941 Verification of collapse/burst resistance
- ISO 2942 Verification of fabrication integrity
- ISO 2943 Verification of material compatibility with fluids
- ISO 3723 Method for end load test
- ISO 3724 Verification of flow fatigue characteristics
- ISO 3968 Evaluation of pressure drop versus flow characteristics
- ISO 16889 Multi-pass method for evaluating filtration performance

North America

18684 Lake Drive East Chanhassen, MN 55317 Toll Free: +1 800-656-3344 (North America only) Tel: +1 732-212-4700

Europe/Africa/Middle East Auf der Heide 2

53947 Nettersheim, Germany Tel: +49 2486 809-0 Friedensstraße 41

68804 Altlußheim, Germany Tel: +49 6205 2094-0

An den Nahewiesen 24 55450 Langenlonsheim, Germany Tel: +49 6704 204-0

Greater China No. 7, Lane 280, Linhong Road

Linhong Road Changning District, 200335 Shanghai, P.R. China Tel: +86 21 2899-3687

Asia-Pacific

100G Pasir Panjang Road #07-08 Interlocal Centre Singapore 118523 Tel: +65 6825-1620

For more information, please email us at *filtration*@eaton.com or visit www.eaton.com/filtration

© 2024 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user's responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the information herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.

