TECHNICAL INFORMATION

Gas/Liquid Separators

Temperature Correction Factor

Temp °F	Factor
-20	0.904
-10	0.917
0	0.929
10	0.941
20	0.953
30	0.965
40	0.977
50	0.989
60	1.000
70	1.012
80	1.023
90	1.034
95	1.040
100	1.046
105	1.051
110	1.057
120	1.068
130	1.079
140	1.090
150	1.101
160	1.112
170	1.121
180	1.133
190	1.143
200	1.154
250	1.206
300	1.256
400	1.353
500	1.445
550	1.490
600	1.533
700	1.618
800	1.701
900	1.780
1000	1.858

Specific Gravity Correction Factors

GAS	Symbol	M.W.	G	Fg
Hydrogen	H ₂	2.0	0.069	0.344
Helium	He	4.0	0.138	0.452
Synthesis	75% H ₂ 25% N ₂	8.5	0.295	0.611
Coke Oven	-	11.0	0.379	0.679
*Methane	CH ₄	16.0	0.551	0.788
Ammonia	NH ₃	17.0	0.586	0.808
Steam (Water Vapor)	H ₂ 0	18.0	0.621	0.826
*Natural Gas	75% CH ₄ 25% N ₂	-	-	-
Acetylene	C ₂ H ₂	26.0	0.897	0.957
Nitrogen	N ₂	28.0	0.950	0.986
Carbon Monoxide	CO	28.0	0.950	0.986
Air	-	29.0	1.00	1.00
Flue Gas	81%N ₂ 19%CO ₂	31.0	1.08	1.027
Oxygen	02	32.0	1.10	1.039
Argon	А	39.9	1.38	1.136
Propane	C ₃ H ₈	44.1	1.52	1.182
*Carbon Dioxide	CO ₂	44.0	1.52	1.181
Nitrous Oxide	N ₂ O	44.0	1.52	1.181
Butadiene	C ₄ H ₆	54.1	1.86	1.284
Sulfur Dioxide	SO ₂	64.1	2.21	1.374
Chlorine	CI ₂	70.9	2.45	1.431
Freon 12	CCI ₂ F ₂	120.9	4.17	1.770

* For applications involving gases (above 500 psi at 200 °F) so marked, contact Eaton to determine whether there is an additional correction factor for compressibility 1 psi = 2.036" Hg 1" Hg = .4912 psi 1 psi = 27.71" H_2O 1" H_2O = .03613 psi

Symbol Key

F_g = Correction factor for specific gravity

F_t = Correction factor for temperature (See table on the inside page)

G = Specific gravity

MMSCFD= Million standard cubic feet per day

MW = Molecular weight

P_a = Pressure (psia) at which volume is measured

Q_a = Rate of flowstandard cubic feet per minute (ACFM)

Q_c = Rate of flowstandard cubic feet per minute of equivalent air

Q_{sg} = Rate of flowstandard cubic feet per minute

T = Operating temp. (°F)

T_a = Temperature (°F) at which volume is measured

W = Rate of flowpounds per hour

The Eaton Air Flow Chart on the next page is based on SCFM (cubic feet per minute of air measured at standard conditions of 14.7 psia and 60 °F). If any of the operating conditions are varied from the above, then correction factors must be applied.

To use the Air Flow Chart for applications involving other gases or

other than standard conditions, the following equation must be solved for Q_c :

$$Q_c = Q_{sg} \times F_g \times F_t$$

In the event that Q_{Sg} is not provided in the proper form, any of the following equations may be used to arrive at the correct flow rate to insert in the above equation:

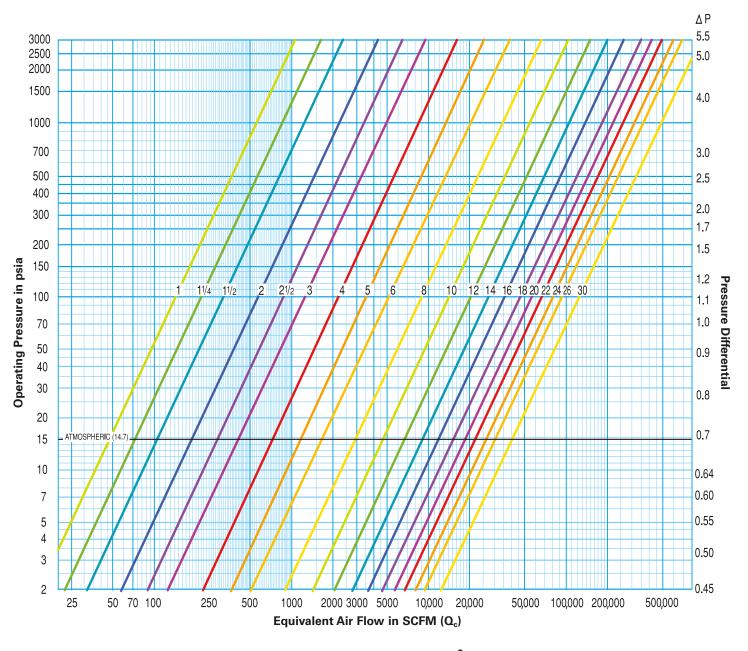
$$Q_{sg} = \frac{6.3 \times W}{MW}$$

$$Q_{sg} = \frac{35.7 \times Q_a \times P_a}{460 + T_a}$$

 Q_{sq} (air only) = .218 \times W

$$Q_{sg} = \frac{MMSCFD}{1440}$$

 $W = (pounds mols/hour) \times MW$

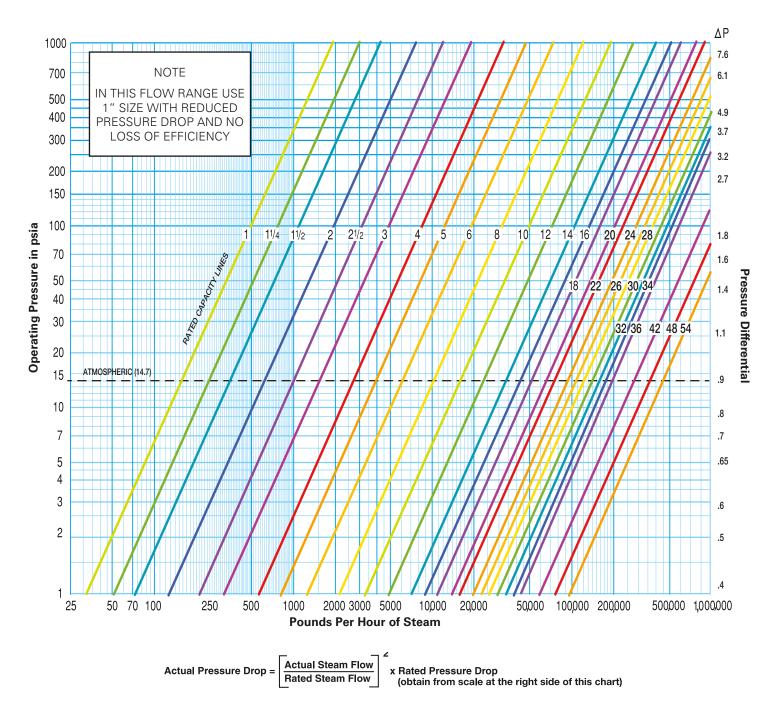


TECHNICAL INFORMATION Gas/Liquid Separators

Air Flow Capacity Chart

The values on the chart represent maximum recommended Air Flow In Standard Cubic Feet Per Minute through standard separators. The chart is based on SCFM (cubic feet per minute

of air measured at standard conditions of 14.7 psia and 60 °F). If any of the operating conditions are varied from these, consult Eaton.



Application's Equivalent Air Flow SCFM (Q_c) Separator's Maximum Rated Air Flow SCFM x Rated Pressure Drop Actual Pressure Drop = (obtain from scale at the right side of this chart)

Saturated Steam Flow Capacity Chart

The values on the chart represent maximum recommended saturated Steam Flow in Pounds per Hour through standard separators. The chart is based on SCFM (cubic feet per minute

of air measured at standard conditions of 14.7 psia and 60 $^{\circ}$ F). If any of the operating conditions are varied from these, consult Eaton.

