

电力公司面临着一项长期挑战, 即在并网系统和孤网系统中输配 电时, 实现供应(或发电)与需 求(或负荷)之间的平衡。这种 平衡确保电网的可靠性和稳定的 电压频率。供需差距会带来频率 下降的风险,随着压力增加,为 了保护发电设备, 电网运营商就 需要开始进行甩负荷。如果供需 差距进一步扩大, 甩负荷不足以 缓解压力, 便会导致发电设备过 载,进而迫使发电厂关闭以保护 发电设备,从而导致级联电力中 断。相反, 当瞬时供应高于需求时, 电力可以通过冷凝器或负荷组以

借助超级电容器增强电网韧性

热能形式耗散,以防止因电压浪 涌或频率增加而损坏发电设备或 其他连接元件。

由于电网需求总是在不断变化, 实现供需平衡可能非常困难。不 过,人们可以实施各种系统和措 施。传统的发电设施, 比如采用 旋转涡轮机的化石燃料、核能或 水力发电厂,具有固有的惯性, 有助于提供部分频率调节功能。 另外还可以调度其他辅助服务来 填补较长时间的供应缺口, 从而 确保可靠的高品质供电。

随着并网分布式可再生能源发电 设施的增加和传统发电设施的淘 汰, 电网的固有惯性减少, 供电 侧的电网可靠性和韧性因此面临 着更高的风险。此外, 可再生能 源有时不够可靠, 例如光伏阵列 上出现散乱云层,或风力涡轮机 所处气候条件不断变化¹。

人们正在部署储能系统, 以帮助 应对电网供需失衡的问题。由于 XL60 超级电容器单体具有低等 效串联电阻 (ESR) 结构, 因此 XLM 超级电容器模组和 XLR 超 级电容器模组能够提供超快响应。 这种特性与其免维护的性质相结 合, 有助于确保储能系统始终可 用,从而实现超强韧性。

伊顿超级电容器模组能够进行数 百万次充放电循环, 无需更换或 维护, 使用寿命最长可达 20 年 (具体取决于运行环境状况)。 超级电容器结构具有独特的物理 特性,无论是近乎全放电,还是 进行较小的有限循环, 其使用寿 命和放电深度因此而受到的影响 都非常小。

超级电容器还具有高功率密度 (kW/L), 因此与电池或动能存储 系统相比, 有助于减少满足电网 需求所需的储能系统占地面积。 这种高功率密度特性既能满足提 高电网可靠性所需的瞬时功率, 同时还能降低储能超量, 从而降 低资本支出。

在部署高能量密度的锂离子电池 系统用于长期服务和作为备用 后,可以并联安装超级电容器模 组, 以降低特高峰放电电流及其 强度, 而这种放电电流会导致电 池寿命迅速缩短。通过超级电容 器模组延长电池的使用寿命,可 以降低输配电资产的运营费用和 维护成本。

伊顿 XLR 和 XLM 超级电容器模 组既可作为独立解决方案,用于 提供超快响应、长寿命、免维护 且高成本效益的能量存储,也可 用于增强电池系统, 以确保公用 电网平衡而有韧性。

1 伊顿可再生能源储能用例

电子事业部

中国上海市长宁区 临虹路 280 弄 3 号 电话: (86) 21 52000099 Eaton.com.cn/electronics

© 2019 伊顿 保留所有权利 美国印刷 出版物编号: 10869 BU-MC19005 2019年1月

所有其他商标均为其各自所有者的财产。

关注我们的社交媒体, 了解最新的产品和支持信息。

www.eaton.com.cn/supercapacitors

