Low-voltage power distribution and control systems > Panelboards >

Pow-R-Line 4X panelboards

Contents

General Description	22.3-2
Panelboards Overview	22.3-2
Application Considerations and Definitions	22.3-4
Pow-R-Line 4X	22.3-7
Pow-R-Line 4DX Drawout Panelboard	22.3-8
Devices	22.3-9
Circuit Breaker Technical Data	22.3-9
Power Xpert Release Trip Unit for	
Molded Case Circuit Breakers	22.3-12
Metering Devices	22.3-14
Monitoring Equipment and Surge Protective Devices	22.3-15
Pow-R-Line Metering and Monitoring Options	22.3-16
Layouts and Dimensions	22.3-17
PRL4X Layout Guide	22.3-17
PRL4DX Layout Guide	22.3-23
Additional Resources	22.3-24
Series Rated Combinations	22.3-24
Panelboard Selection Guide	22.3-35
Type PRL4X Modifications	22.3-38

Panelboards Overview

Choices to quickly change feeder breakers in electrical distribution equipment have evolved over the years. While using drawout switchgear with power air circuit breakers remains a highly reliable solution, requests for drawout molded case circuit breakers (MCCBs) have increased. And, customers need a wall-mounted panelboard solution with front-accessibility and front-connected equipment to meet space requirements and application needs.

Eaton's drawout MCCB Pow-R-Line® 4DX (PRL4DX) panelboard provides this solution.

This is the first design to offer two- and three-pole MCCBs in a mechanical drawout design. Breaker ratings from 20 A to 600 A use unique drawout cassettes. Breakers are inserted and removed via a mechanical removal system similar to other drawout designs associated with switchgear; however, these breakers are horizontally mounted in a traditional panelboard groupmounted manner.

Market and Segment Applications

While the drawout MCCB panelboard design may be substituted for nearly any traditional application with feeder MCCBs, it has been specifically designed to meet the needs of several industries, including:

- Electrical distribution systems where a changeout of circuit breakers is needed to upgrade equipment to a new process
- Data centers
- Industrial facilities to minimize downtime
- Institutions
- Laboratories
- Healthcare facilities
- Critical load applications

Standards and Certifications

- UL® 67 Listed for wall-mounted applications from 600 A to 1200 A
- National Electrical Code®

Available Ratings

The panelboards are rated at 240 Vac, 480 Vac and 600 Vac. Fault current is available up to 200 kAIC at 240 Vac, 100 kAIC at 480 Vac and 65 kAIC at 600 Vac. The short-circuit current rating of the panelboard is determined by the low short-circuit current rating of the lowest rated overcurrent device in the panelboard.

Boxes and trims are UL 50 Listed and labeled. Both the box and the trim are painted ANSI-61 light gray. Deadfront covers are also painted ANSI-61 light gray to match box and trim.

Drawout feeder MCCBs are available in two- and three-pole offerings from 20 A to 600 A. Main breakers above 600 A are fixed-mounted using a traditional bolt-on design. Main breakers 600 A and below are available with either the traditional fixed-mounted, bolt-on design or in a drawout cassette. For drawout mains or feeders above 600 A, please use Eaton's switchboard offering.

Panelboard Options

- Copper and silver-plated copper
- Copper lugs
- Density-rated bus
- Ground bars
- Customer-owned meters
- Service entrance equipment construction
- Surge protective devices
- Seismically qualified panelboards

General Construction Features

Eaton's assembled panelboards are designed for sequence phase connection of branch circuit devices. This allows complete flexibility of circuit arrangement (single-, two- or three-poles) to allow balance of the electrical load on each phase.

Sturdy, rigid chassis assembly ensures accurate alignment of interior with panel front; prevents flexing and minimizes possibility of loosening or damage to current carrying parts during and after installation.

Four point in-and-out adjustment of panel interior is provided to meet critical depth dimensions on flush installations. This compensates for possible misalignment of box at installation.

Main lugs are mechanical solderless type and approved for copper and aluminum conductors.

Enclosures

Boxes are code-gauge galvanized steel except for column type panelboards, which include a painted box finished in ANSI-61 light gray to match the trim. Standard panelboard cabinets are designed for indoor use. Alternate types are available for outdoor and special purpose applications.

All enclosures are furnished in accordance with UL standards and include wiring gutters with proper wire bending space. Special cabinets can be provided at an additional charge.

The box dimensions shown are inside dimensions. For outside dimensions, add 0.25-inch (6.4 mm).

Standard panelboard boxes are supplied without knockouts (blank endwalls).

EZ™ Trim

The EZ Box and EZTrim are provided standard for Pow-R-Line 1X and Pow-R-Line 2X lighting panelboards, as well as Pow-R-Line 3X and Pow-R-Line 3E mid-range panelboards.

EZTrim Provides Standard Door-in-Door Construction With No Exposed Hardware or Sharp Ridges. No Tools are Required for Installation.

The trims for lighting and appliance branch circuit panelboards and small power distribution panelboards include a door with rounded corners and concealed hinges. A flush-type latch and lock assembly is included. All locks are keyed alike. These trims are available in both surface and flush mounted designs.

Fronts for power distribution panelboards use a unique breaker front cover design in which each device has a dedicated bolt-on steel cover. The individual covers form a single deadfront for the panelboard that is used in conjunction with two wiring gutter covers to complete the trim. A door is not finished as part of the standard offering on these panelboards but can be provided, for an additional charge, using a deeper than standard box.

Combination AFCI Circuit Breakers

Eaton's 125 Vac AFCI single- and two-pole, 15 A and 20 A bolt-on breakers in panelboards meet Article 210.12 of the NEC®. See the NEC for definitions and details.

Pow-R-Line 4X Power Panels

- Pow-R-Line 4X panelboard uses circuit breakers
- A single chassis accommodates both circuit breakers and fusible switches
- Main and neutral are located at the same ends to provide additional space for branch devices
- Three-piece trim facilitates installation
- Will accommodate circuit breakers to provide higher ratings in a standard chassis and increased series ratings
- UL tested and approved. Meets NEC and NEMA standards

Pow-R-Line 4DX Drawout Panelboard

- Quick changeout or addition of breakers without changing hardware
- Front connected, front accessible
- Drawout circuit breakers 20–600 A ratings
- Fixed-mounted molded case circuit breakers 15–1200 A
- Mains 400–1200 A
 - Main lugs only
 - Main molded case circuit breaker
- Single chassis supports both drawout and fixed-mounted breakers
- Mains and neutrals mounted on same end of chassis/box

Application Considerations and **Definitions**

Standards

All Eaton's panelboards are designed to meet the following applicable industry standards, except where noted:

- 1. Underwriters Laboratories
 - a. Panelboards: UL 67
 - b. Cabinets, boxes and trims: UL 50

Note: Only panelboards containing UL listed devices can be UL labeled.

- 2. National Electrical Code
- 3. NEMA Standards: PB 1
- Federal Specification W-P-115c Circuit breaker — Type I Class 1 Fusible switch — Type II Class 1

Panelboard Selection Factors

In selecting a panelboard, the following factors must be considered:

- a. Service (voltage and frequency).
- b. Interrupting capacity (fully or series rated).
- c. Ampere rating of main.
- d. Ampere ratings of branches.
- e. Installation environment.
- f. Codes and standards mandates.

Panelboard Short-Circuit Rating

The short-circuit rating of Eaton's assembled panelboards are test verified by, and listed with, Underwriters Laboratories. Generally, these ratings are that of the lowest interrupting rated device in the panel.

Certain exceptions to this rule exist where branch devices have been UL tested in combination with specific main devices having a higher interrupting rating. Where these defined main breaker and branch breaker combinations are used, the series short-circuit rating of the assembled panelboard will be the same as the series tested rating of the approved rated main breaker. Available main and branch breaker combinations are tabulated on Page 22.3-24 through Page 22.3-34. All combinations shown are UL tested and listed.

These series ratings apply to panels having main devices, or main lug only panelboards fed remotely by the device listed in the series ratings chart as the main, for which UL listed tests were conducted.

Selective Coordination

Please refer to Molded Case Circuit Breakers Design Guides for detailed information on overcurrent protective device combinations for use on selectively coordinated systems.

Service Entrance Equipment

NEC Articles 230.F and G, and UL, require that:

- Panels used as service entrance equipment must be located near the point where the supply conductors enter the building.
- A panelboard having main lugs only shall have a maximum of six service disconnects to de-energize the entire panelboard from the supply conductors. Where more than six disconnects are required, a main service disconnect must be provided.
- Must include connector for bonding and grounding neutral conductor.
- d. A service-entrance-type UL label must be factory installed.
- e. Ground fault protection of equipment shall be provided for solidly grounded wye electrical services of more than 150 V to ground, but not exceeding 600 V phase-to-phase for each service disconnecting means rated 1000 A or more.

Service entrance panels must be identified as such on the order entry to the manufacturing location.

Column Type Panelboards

The same general code restrictions apply as for standard width panels except where trough extensions are used.

Multi-Section Panelboards

When more than 42 overcurrent protective devices are required, two or more separate enclosures may be required. Separate fronts for each box are standard.

Interconnecting Multi-Section Panelboards

When a panelboard, for connection to one feeder, must be furnished in more than one section (box), each section must be furnished with main bus and terminals of the same rating, unless a main overcurrent device is provided in each section.

Sub-feed or through-feed provisions must also be added to provide connection capability to the second section.

Note: Sub-feed or through-feed lugs cannot be used on any panelboard that is not protected by a single main overcurrent device either in the panelboard or immediately upstream, i.e., service entrance panelboards with main lugs only using the six disconnect rule.

Sub-Feed Lugs (Figure 22.3-1)

Sub-feed lugs are one means of interconnecting multi-section panels. The sub-feed (second set of) lugs are mounted directly beside the main lugs. These are required in each section except the last panel in the lineup. The feeder cables are brought into the wiring gutter of the first section and connected to the main lugs. Another set of the same size cables are connected to the sub-feed lugs (Section 1) and are carried over to the main lugs of the adjacent panel. Cross connection cables are not furnished by Eaton. Sub-feed lugs are only available on main lug only panels.

Note: Sub-feed lugs may not be used on main lug only (six disconnect rule) service entrance panels.

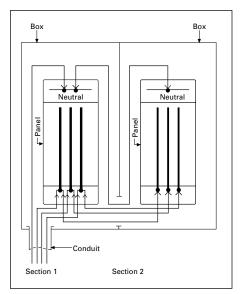


Figure 22.3-1. Sub-Feed Lugs

Through-Feed Lugs (Figure 22.3-2)

Through-feed lugs are another method to interconnect multi-section panelboards. The incoming feeder cables are connected to the main lugs or main breaker at the bottom of panel (Section 1). Another set of lugs (through-feed) are located at the opposite end of the main bus. The interconnecting cables are connected to the through-feed lugs in Section 1 and are carried over to the main lugs in Section 2. The connection arrangement could be reversed, i.e., main lugs at top; through-feed lugs at bottom end of panel. Cross cables are not furnished by Eaton.

Note: Through-feed lugs may not be used on main lug only (six disconnect rule) service entrance panels.

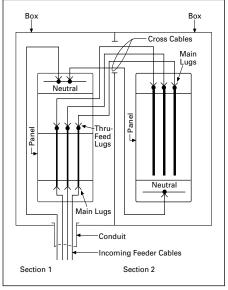


Figure 22.3-2. Through-Feed Lugs

Multiple Section Panelboard— Flush Mounted

Shown below is the standard method for flush mounting multiple section lighting and distribution panelboards using standard flush trims.

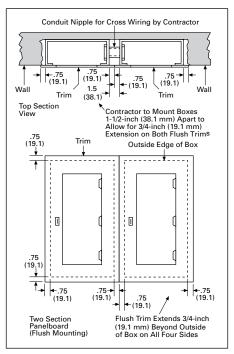


Figure 22.3-3. Multiple Section Panelboard— Flush Mounted—Dimensions in Inches (mm)

Branch Circuit Loading for Lighting Panels

The size of mains and branches should be selected based on the following:

- Lighting circuits: NEC Article 210, 215, 220 and 240.
- b. Distribution circuits, actual or continuous loads: NEC Article 384.16.
- c. Motor circuits: NEC Article 430.
- d. Diversity factor.
- e. Provision for future loading.

Overcurrent Protection

National Electrical Code Article 408 states a panelboard shall be protected by an overcurrent protective device having a rating not greater than that of the panelboard. The overcurrent protective device shall be located within or at any point on the supply side of the panelboard.

Exceptions to Article 408 selectively apply. Refer to the National Electrical Code Article 408 for specifics.

Ground Fault Protection

Ground fault protection (GFP) may be added to most panelboards using Eaton's integral molded case circuit breaker GFP and included feeder devices on power panelboards and mains on all panelboards.

Arcflash Reduction Maintenance System™

Eaton's Arcflash Reduction Maintenance System is available on many molded case circuit breakers from 70 A to air power circuit breakers at 5000 A. Recognized by the 2011 National Electrical Code and the National Electrical Safety Code (NFPA 70E), the Arcflash Reduction Maintenance System allows breakers to trip quickly thus significantly reducing the available arc flash potential.

Ambient Temperatures

The primary function of an overcurrent device is to protect the conductor and its insulation against overheating. In selecting the size of the devices and conductors, consideration should be given to the ambient temperature surrounding the conductors within and external to the panelboard. Cumulative heating within the panelboard may cause premature operation of the overcurrent protective devices.

UL test procedures are based, in part, on 80% loading of panelboard branch circuit devices. Article 408 of the NEC limits the loading of overcurrent devices in panelboards to 80% of rating where in normal operation the load will continue for three hours or more.

Further derating may be required, depending on such factors as ambient temperature, duty cycle, frequency or altitude.

Exception: There is one exception to this rule in both UL and NEC. It applies to assemblies and overcurrent devices that have been approved for continuous duty at 100% of its rating. This exception is covered in NEC 210.20 (a). Also see Molded Case Circuit Breakers Design Guides for additional information.

Special Conditions

Standard panelboards, assembled with standard components, are adequate for most applications. However, special consideration should be given to those required for application under special conditions such as:

- a. Excessive vibration or shock.
- b. Frequencies above 60 cycles.
- c. Altitudes above 6600 ft (2012 m).
- d. Damp environment (possible fungus growth).
- e. Compliance with federal, state and municipal electrical codes and standards.

Seismic Qualification

Refer to Power Distribution Systems Design Guides for information on seismic qualification for this and other Eaton products.

Harmonic Currents

Standard panelboard neutrals are rated for 100% of the panelboard current. However, because harmonic currents can cause overheated neutrals, an option is provided for neutrals to be rated at 200% (1200 A maximum neutral for 600 A main bus) of the panelboard phase current. Panelboards with the 200% rated neutral are UL listed as suitable for use with nonlinear loads.

Prior to specifying the 200% rated neutral, Eaton recommends a harmonic survey be conducted of the distribution system, be it new or existing.

Surge Protective Devices (SPD)

The quality of power feeding sensitive electronic loads is critical to the reliable operation of any facility. In modern offices, hospitals and manufacturing facilities, the most frequent causes of microprocessor-based equipment downtime and damage are voltage transients and electrical noise.

Electrical loads and microprocessorbased equipment are highly susceptible to both high and low energy transients. High energy transients include lightning induced surges and power company switching. These high energy transients can destroy components instantly.

More frequently the electrical system experiences low energy transients and high frequency noise.

The effects of continual low energy transients and high frequency noise can cause erratic equipment performance or sudden failure of electronic circuit board components.

Eaton can provide protective and diagnostic systems integral to panelboards. The SPD is integrated into the panelboards using a "zero lead length" direct bus bar connection. Integral disconnect is used on all Pow-R-Line 4 panels.

Eaton SPDs May be Integrated into Most Panelboards

The SPD protects sensitive electronic equipment from the damaging effects of high and low energy transients.

For complete product description and available ratings, refer to Surge Protection (SPD) & Power Conditioning Products Design Guides.

Compact Panelboard Meter

Most Eaton panelboards can integrate a compact meter for reading the panelboard power and energy usage. Eaton's Power Xpert Meter 350 has ANSI 12.20 0.5% accuracy, a bright backlit LCD display, real energy pulse output, phase loss alarm and optional RS-485 communication capability.

PRL4X Circuit Breaker Panelboard

General Description

Panelboard Ratings

Voltage

- 240 V, 480 V or 600 Vac maximum
- 600 Vdc maximum

Main Lugs

■ 250-1200 A

Main Breakers

■ 250-1200 A

Branches

- Breakers 15-1200 A, bolt-on
- Breakers 20-600 A drawout
- Fusible switches 30–1200 A, bolt-on

Short-Circuit Current Ratings (Symmetrical)

240 Vac: 10–200 kA fully rated
 240 Vac: 22–200 kA series rated
 480 Vac: 14–200 kA fully rated
 480 Vac: 22–150 kA series rated
 250 Vdc: 10–22 kA fully rated

Service

- Three-phase, four-wire 208Y/120V, 240/120V delta and 480Y/277V
- Single-phase, three-wire 120/240 V
- Single-phase, two-wire 120 V
- Three-phase, three-wire 120, 240, 480 and 600 V
- Two-wire 125 Vdc
- Two-wire 250 Vdc
- Two-wire 600 Vdc

Suitable for service entrance applications when specified.

Bussing

250–1200 A tin-plated aluminum is standard; copper is available as an option. Density rated bus is also available as an option.

Main Lugs Only

The short-circuit rating of the MLO assembled panelboard will be fully rated based upon the lowest rated branch device or may be series rated with an approved upstream device.

Main lugs only ampere ratings: 250, 400, 600, 800 and 1200.

Main Circuit Breakers

The short-circuit rating shown is that of the main breaker only. The short-circuit rating of the assembled panelboard is the rating of the lowest fully rated main or branch device, or the rating of an approved series rated combination.

Pow-R-Line 4DX Drawout Panelboard

Type PRL4DX Drawout Molded Case Circuit Breaker Power Panelboard

General Description

- Drawout molded case circuit breaker power panelboard
- Front accessible
- Front connected
- Through-the-door design drawout mechanism
- Visual indication of breaker status and position
- Large grab handles for easy removal
- 600 Vac maximum
- 1200 A maximum mains
- 600 A maximum drawout molded case feeder breakers

Application Description

- Interrupting ratings up to 200 kAIC symmetrical
- Feeder power panelboard
- Rated as Service Entrance Equipment when appropriately equipped
- Ideal for:
 - Data centers
 - □ Industrial facilities
 - Process equipment manufacturing
 - ☐ Anywhere that requires quick change of feeder devices is needed

Benefits

- Ease of maintenance
- Faster to remove and install
- Less downtime

Standards and Certifications

- UL 67 Listed chassis
- UL 50 Listed box and trim

Pow-R-Line 4X Panelboards

Circuit Breaker Technical Data

Table 22.3-1. Electrical Characteristics of Circuit Breakers

Circuit Breaker Ratings				UL Listed I	nterrupting F	Ratings (kA r	ns Symmetric	al)			
Туре	Ampere	Number	Volts	AC Rating, Volts					DC Rating, Volts ①		
	Rating	of Poles	AC	120/240	240	277	480	600	125	250	
ВАВ, НОР	15–70 15–100	1 2	120 120/240	10 10	<u></u>		_ _			_	
BAB-H, HQP-H	15–100	2,3	240	_	10	_	_	_	_	_	
BABRP, BABRSP	15–30 15–30	1 2	120 120/240	10 10	_	_	_		_	_	
QBGF, QPGF, QPGFEP QBGFEP	15–50 15–50	1 2	120 120/240	10 10	_	_	_	_	_	_	
QBAF, QBAG	15–20 15–20	1 2	120 120/240	10 10	_		_			_	
QBHW, QPHW	15–70 15–100	1 2	120 120/240	22 22	_		_		_	_	
QBHW-H, QPHW-H	15–100	2,3	240	_	22	_	_	_	_	_	
QBHGF, QPHGFEP QBHGFEP	15–30 15–30	1 2	120 120/240	22 22	_		_			_	
QBHAF, QBHAG	15–20 15–20	1 2	120 120/240	22 22	_		_			_	
GHB	15-100② 15-100	1 2, 3	277 480Y/277	65 -	_ 65	14 —	_ 14 ③	_	14 -	_ 14	
GHQ	15–30	1, 2	277	65	_	14	_		_	_	
HGHB	15–30	1	277	65	_	25	_	_	_	_	
GHBGFEP	15–60	1	277	-	_	14	_	_	T-	Ī-	
GHQRSP	15–100 15–100	1 2	277 480Y/277	65 —	_ 65	14 14	_ 14 ③		_	_	
GHBS	15–30 15–30	1 2	277 480Y/277	65 —	_ 65	14 14	_ 14 ③			_	
EGB	15–125 15–125	1 2, 3	277 480	35 -	35 35	18 _	_ 18		10	_ 10	
EGS	15–125 15–125	1 2,3	277 480	100	_ 100	35 —	_ 35		35 _	_ 35	
EGH	15–125 15–125	1 2,3	277 480	200	_ 200	65 —	_ 65		42 —	_ 42	
PDG2xF	15–100 15–100	1 2,3	277 480	_	_ 18	14 _	_ 14		10 _	_ 10	
PDG2xG, PDG3xG*	15–150 15–225	1 2, 3	277 600	_	_ 65	35 _	_ 35	_ 18	10	_ 10	
PDD2xF PDD2xG PDD3xGY	100–225 100–225 250–400	2, 3 2, 3 2, 3	240 240 240		22 65 65	_ _ _	_ _ _	_ _ _	10 10 —	_ _ _ 10	
PDG3xG* @, PDF3xG @ LHH @ NHH PDG3xG* CLD @@ PDG4xG @, PDF4xG @@ CND @@	100–400 150–400 150–350 250–600 300–600 300–800 400–1200	2, 3 2, 3 3 3 2, 3 2, 3 2, 3 2, 3	600 480 600 600 600 600 600	- - - - -	65 100 100 65 65 65 65	- - - - -	35 65 65 35 35 50	25 35 35 18 25 25 25	- - - - -	10 42 - 22 22 © 22 0	
CNGC CNGH CNGS PDG5xP PDG5xM NGS	800, 1200 800, 1200 800, 1200 800, 1200 800, 1200 800, 1200	_ _ _ _ _	- - - -	_ _ _ _ _	200 100 85 200 100 85	- - - - -	100 65 50 100 65 50	65 35 25 65 35 25	_ _ _ _ _	- - - - -	

 $^{\, \}oplus \,$ DC ratings apply to substantially non-inductive circuits.

 $^{\, @\,}$ DC rated single-pole, 15–70 A only.

³ Rating 480Y/277 Vac maximum.

Available with integral ground fault protection.

⑤ 100% rated breaker.

DC rating not available with PXR trip units.

Table 22.3-1. Electrical Characteristics of Circuit Breakers (Continued)

Circuit Breaker Ratings					UL Listed Interrupting Ratings (kA rms Symmetrical)							
Туре	Ampere	Number	Voltage		AC Rating	, Volts				DC Rat	ing, Volts ①	
	Rating	of Poles	AC	DC	120/240	240	277	480	600	125	250	600
High Interrupting Capacit	y Circuit Brea	kers										
PDG2xM	15–150 15–225	1 2,3	277 600	_ _	_	_ 100	65 —	- 65	_ 25	10 —	_ 22	_
PDD2xM PDG3xM* @, PDF3xM @	100–225 100–400	2, 3 2, 3	240 600	_	_	100 100	_	_ 65	_ 35	10 —	_ 22	
PDG4xM ②, PDF4xM ②③, PDG5xM ②	300–800 400–1200	2, 3 2, 3	600 600	_	_	100 100	_	65 65	35 35	_	25 —	_
Current Limiting Circuit B	reakers	•						,				•
PDG2xP PDD2xM	15–225 100–225	2, 3 2, 3	600 240		_	200 200	_	100 —	35 —	_ 10	22 _	_ _
PDG3xP* @ PDG3xM* @ PDG5xP @	100–400 250–600 400–1200	2, 3 2, 3 2, 3	600 600 600	_ _ _	_ _ _	200 200 200	_ _ _	100 100 100	65 50 65	_ _ _	22 42 —	
Current Limit-R® Circuit B	reakers											
FCL LCL ②	15–100 125–400	2, 3 2, 3	480 480	_	_	200 200	_	150 200	_	_	_ _	_
TRI-PAC® Current Limiting	Circuit Brea	kers										
FB-P LA-P NB-P	15–100 70–400 300–800	2, 3 2, 3 2, 3	600 600 600	_ _ _		200 200 200	_ _ _	200 200 200	200 200 200	- - -	6 6 6	_ _ _
Direct Current (DC) Rated	Breakers											
HFDDC ©© HJDDC ©© HKDDC ©©	15–150 70–250 100–400	2, 3 2, 3 2, 3	_ _ _	600 600 600	- - -	_ _ _	- - -	_ _ _	_ _ _	42 42 42	42 42 42	35 35 35
HLDDC © P HMDLDC © P NBDC © P	300–600 300–800 700–1200	2, 3 2, 3 2, 3		600 600 600	_ _ _	_ _ _	_ _ _	_ _ _		42 42 42	42 42 42	35 35 35

① DC ratings apply to substantially non-inductive circuits.

② Available with integral ground fault protection.

^{3 100}k based on NEMA test procedure.

DC rating not available with PXR trip units.

S For use on DC systems only.

Non-interrupting trip type.

 $^{{\}color{red} @ \ } Interrupting \ trip \ type.$

Panelboards

Where copper-aluminum terminals are supplied on designated panelboard types, best results are obtained if a suitable joint compound is applied when aluminum conductors are used.

Table 22.3-2. Standard Main Lug Terminals

	Wire Size Rai	nges for Ampere (Capacity				
Туре	100 A	225 A	250 A	400 A	600 A	800 A	1200 A
Pow-R-Line 4X	_	_	#4–500 kcmil	(2) #4–500 kcmil	(2) #4–500 kcmil	(3) #4–500 kcmil	(4) #4–500 kcmil

Note: Optional 750 kcmil mechanical screw-type terminals are available upon request. Panelboard dimensions may be affected. Refer to Eaton.

Table 22 3-3 Standard Main Breaker and Branch Breaker Terminals

BreakerType	Ampere Rating	Wire Size Ranges
BAB, QBHW, BABRSP HQP, QPHW	15–70 90–100	#14-#4 #8-1/0
PDD2xF, PDD2xG PDD2xM, PDD2xM ①	100–225	#4–4/0 or #6–300 kcmil
EGB, EGE, EGS, EGH	15–50 60–125	#14-3/0 AI/Cu #6-3/0 AI/Cu
PDG2xF, PDG2xG PDG2xM, PDG2xP ①, HFDDC ②	15–100 125–225	#14–1/0 #4–4/0
FCL	15–100	#14–1/0
GHB, HGHB, GHQ, GHQRSP	15–50 25–100	#14–1/0 #10–1/0
HJDDC ②	70–250	#4–350 kcmil
PDD3xGy	250–350 400	250–500 kcmil (2) 3/0–250 kcmil or (1) 3/0–500 kcmil
PDG3xG* PDG3xM*, PDG3xP* HKDDC @, PDF3xG © PDF3xM ©	225 350 400	(1) #3–350 kcmil (2) 3/0–250 kcmil or (2) 3/0–250 kcmil or (1) 3/0–500 kcmil
LHH	150–400	#2–500 kcmil (2) #2–500 kcmil or (1) 500–750 kcmil
PDG3xG*, PDG3xM*, PDG3xM*	250–400 500–600	(1) #2–500 kcmil (2) #2–500 kcmil
CLD ①	300-500	(2) 250-350 kcmil
PDG4xG, PDG4xM, HMDLDC ① PDF4xG, PDF4xM	400–600 700–800	(2) #1–500 kcmil (3) 3/0–400 kcmil
PDG5xM, CND PDG5xP, CLD ①	800–1000 1200	(3) 3/0–400 kcmil (4) 4/0–500 kcmil
NGS, PDG5xM, PDG5xP CNGS, CNGH, CNGC	400–1200	(4) 4/0–500 kcmil or (3) 500–750 kcmil

Table 22.3-4. Fusible Switch Terminals

Ampere Rating	Wire Size Ranges
30 60 100	#14–1/0 #14–1/0 #14–1/0
200	#4–300 kcmil
400	250–750 kcmil or (2) 3/0–250 kcmil
600	(2) #4–600 kcmil or (4) 3/0–250 kcmil
800	(3) 250–750 kcmil or (6) 3/0–250 kcmil
1200	(4) 250–750 kcmil or (8) 3/0–250 kcmil

② LHH is 400 A maximum.

Power Xpert Release Trip Unit for Molded Case Circuit Breakers

Description

Eaton's Power Xpert Release (PXR) trip units are programmable communicating microprocessor-based low-voltage electronic trip unit systems for Eaton molded case circuit breakers. PXR trip units are available in four models: PXR 10, PXR 20, PXR 20D and PXR 25.

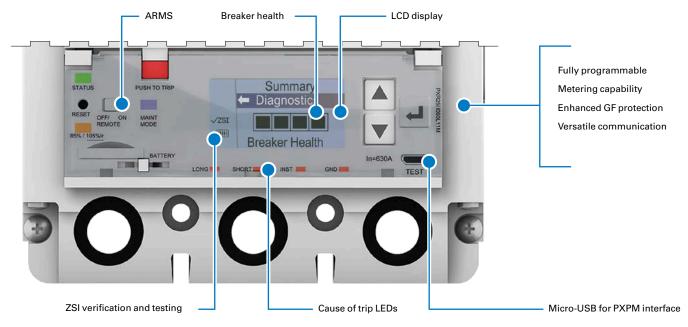
Standards and Certifications

The PXR trip units are listed by Underwriters Laboratories (UL) and Canadian Standards Association (CSA) for use in Frame PD-2, PD-3, PD-4, PD-5 and PD-6 molded case circuit breakers. All PXR units have also passed the IEC 60947-2 test program that includes EMC testing. All trip units meet the low-voltage and EMC directives and carry the CE mark.

Features

The PXR electronic trip units provide an enhanced and easy-to-use interface that enables end users and maintenance engineers to more easily change set points, test and configure circuit breakers, and review energy and power information. Also, the Power Xpert Protection Manager software provides the capability of secondary injection tests and reports on-demand without the need of expensive test kits.

Advanced features include:


- Industry-first breaker health algorithms provide real-time monitoring and communication of breaker condition
- Cause of trip LED indication and trip event data storage
- Zone selective interlocking (ZSI) verification and testing indication
- Adjustable Arcflash Reduction Maintenance System[™] (ARMS) settings
- LCD display with programmable settings

Arcflash Reduction Maintenance System (ARMS)

Power Xpert Protection Manager (PXPM) Software

PXR 25 Trip Unit Features

Pow-R-Line 4X **Panelboards**

Table 22.3-5. Power Xpert Release (PXR) Features

Features	PXR 10	PXR 20	PXR 20D	PXR 25
Protection types	LSI	LSI/LSIG	LSI/LSIG	LSI/LSIG
Status indication	Standard	Standard	Standard	Standard
USB secondary injection testing	Standard	Standard	Standard	Standard
Programmable by USB port (PXPM)	Standard	Standard	Standard	Standard
Independent instantaneous adjustment	Standard	Standard	Standard	Standard
Adjustable L, S, I, G pickup and time		Standard	Standard	Standard
Cause of trip indication	Available through USB port (PXPM)	Standard	Standard	Standard
Load alarm indication with 2 levels		Standard	Standard	Standard
Programmable load alarm levels			Standard	Standard
Ground fault protection and alarm		Optional	Optional	Optional
Arcflash Reduction Maintenance System (ARMS) Available PD3, PD4, PD5, PD6		Optional	Optional	Optional
Zone selective interlocking (ZSI) with indication		Optional	Optional	Optional
Programmable relays		Optional	Standard	Standard
Modbus RTU communication		Optional	Standard	Standard
CAM module communication		Optional	Optional	Optional
Rotatable LCD display			Standard	Standard
Breaker health and diagnostic monitoring		Available through USB port (PXPM)	Standard	Standard
Voltage metering accurate to 0.5%				Standard
Power and energy metering accurate to 1%				Standard

Metering Devices

Power Xpert Meter 1000

The Power Xpert 1000 Meter

The Power Xpert Meter 1000 (PXM1000) series power and energy meters monitor the most critical aspects of an electrical distribution system. This premier metering instrument uses the latest in advanced technology to make it simple to use, powerful, scalable and highly flexible.

The PXM1000 is a revenue grade power and energy meter that delivers a cost-effective solution for energy and sub-metering applications. This three-phase meter provides high accuracy and advanced features in the standard 4-inch form factor and can be expanded with multiple modular I/O options.

Key features include:

- ANSI C12.20 and IEC 62053-22 utility billing accuracy will help meet stringent customer specifications
- Available in 5 A and 333 mV CT type inputs, allowing ease of use in multiple applications
- Rogowski coils allow for ease of use in retrofit applications
- Multiple protocols including Modbus TCP and BACnet/IP and with available HTTP push, allowing data to be sent to the cloud to help meet energy code data storage requirements

Power Xpert Meters 2000

The Power Xpert 2250 Meter

This meter provides all the core functions for monitoring power consumption and power quality, ethernet connectivity and onboard gateway card limits. This unit uses D/A technology to sample circuits at 400 samples per cycle for extremely accurate measurement of power factor and energy consumption. In addition, the meter has 256 MB for logging meter data.

The Power Xpert 2260 Meter

This meter adds the ability to monitor total harmonic distortion and the ability to set onboard meter limits. The meter also will illuminate LEDs on the faceplate, indicating that a limit has been exceeded and provides 512 MB for data logging.

The Power Xpert 2270 Meter

This meter adds the ability to monitor individual harmonics and visualize waveforms on your desktop using the embedded web server and raises the storage to 768 MB for data logging.

Meter series benefits include:

- Fully understand your facility's power quality
- Detailed event information; pinpoint the root causes of problems—or prevent them from occurring
- Measure, trend and analyze power via information through onboard web and comma separated values (CSV) exporting capabilities
- Up to 768 MB of storage; typically 15 years of storage capability depending on the meter model and frequency of events
- Local or remote configuration

IQ 100/200

IQ 130/140/150

Providing the first line of defense against costly power problems, Eaton's IQ 100 electronic power meters can perform the work of an entire wall of legacy metering equipment using today's technology.

- 24-bit AD converters that sample at more than 400 samples per cycle
- Meet ANSI C12.20 standards for accuracy of 0.5 percent
- Confidently used for primary revenue metering and submetering applications
- Direct-reading metered values such as watts, watt demand, watthours, voltage amperes (VA), VA-hours, vars, varhours and power factor
- Also available in Eaton's enclosed meter product

10.250/260

The IQ 250 and IQ 260 electronic meters provide capabilities you wouldn't normally expect in an affordable, ultracompact meter—such as fast sampling rate and accurate metering for a full range of power attributes. Built-in slots allow for future upgrades.

- Comprehensive metering
- High-end accuracy
- Self-test capability to validate accuracy
- Large, easy-to-read display
- Local or remote configuration
- Industry-standard communication protocols
- Mix-and-match input/output options
- Integration with Eaton's Power Xpert Architecture
- Field-upgradeable

For information on other available power meters, visit www.eaton.com/meters.

Monitoring Equipment and Surge Protective Devices

Power Xpert Multi-Point Meter

Power Xpert Gateway

Integrated Surge Protective Devices

Power Xpert Multi-Point Meter

Eaton Power Xpert Multi-Point meter (PXMP) helps facility managers track and accurately allocate energy usage among tenants or departments in office buildings, shopping malls, industrial sites, universities and campuses, and apartment and condominium complexes. Power Xpert Multi-Point Meters monitor, quantify and help benchmark energy usage.

Key features include:

- Meets rigid ANSI C12.20 and IEC 62053-22 accuracy specifications for revenue meters
- Quick connect terminals for current sensors, Modbus communication and bus voltages
- Monitors power and energy for up to 60 current sensors; scalable from 6 to 60 circuits
- 256 MB of standard memory for up to two years of 15-minute interval data
- Extensive LEDs for verification of sensor connections, communication status and equipment status
- Automatically detects rating of each current sensor; current sensors are self-protecting in the event of an open circuit condition under load for added safety and reliability

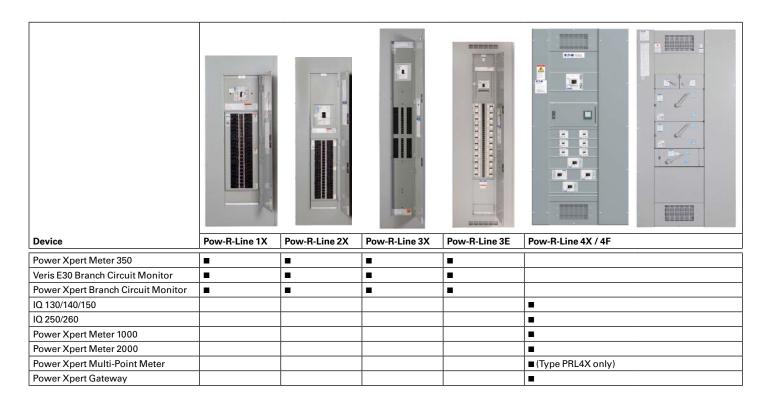
For more information, visit www.eaton.com/meters.

Power Xpert Gateway

Eaton's Power Xpert Gateway (PXG) bridges the IT and facilities management worlds by bringing disparate panelboards, switchboards and other power equipment onto the network. The PXG takes the complexity out of connecting power equipment to the network. The webenabled PXG is an out-of-the-box device that can support up to 96 devices, translate most industrial communication protocols, and offer user-selectable events and real-time trending. It also features e-mail notification of events, waveform capture and data/event logging - all with no special software. Adding basic meters or the utility's meter, the PXG assists in tracking energy usage. The PXG recognizes the interdependence of IT systems and power systems, and delivers what organizations need to bring these worlds together for seamless, end-to-end system reliability.

The PXG consolidates data available breakers, meters, motor controllers and protective relays, and presents the information in a variety of ways (a web browser being the most widely used method). The PXG is a stand-alone solution. As needs change and grow, the PXG can be integrated through Power Xpert Software into a broader solution that encompasses other intelligent hardware and can integrate with third-party network management systems (NMS) or building management systems (BMS) for system-wide monitoring and reporting of power and IT.

For detailed information, please visit www.eaton.com/meters.


Integrated Surge Protective Devices

Eaton integrates our industry-leading surge protective devices (SPD) into switchboards. Lead length is kept to a minimum to maximize SPD performance. SPD units are available with ratings up through 400k, and are UL listed and labeled to UL 1449 3rd Edition.

All switchboards with integrated SPD units are connected to a lineside overcurrent protective device for disconnecting means. When applied on the lineside of a service entrance main, the disconnecting means does not count as a service disconnect per National Electrical Code Article 230.71[A].

For complete SPD product description, application and ratings, visit www.eaton.com/spd.

Pow-R-Line Metering and Monitoring Options

PRL4X Layout Guide

Technical Data and Specifications

Table 22.3-6. Main Circuit Breakers—Type PRL4X and PRL4DX

Breaker Frame	Breaker	Interrupting Rating (kA Symmetrical)							
Amperes	Туре	240 Vac	480 Vac	600 Vac	250 Vdc	600 Vdc			
250	JD	65	35	18	10	—			
250	HJD	100	65	25	22	_			
250	JDC	200	100	35	22	_			
250	LCL	200	200		_	_			
250 ①	HJDDC		-	-	42	35			
350	NHH	100	65	35	_	_			
400	PDD3xGy	65	_	_	10	_			
400	PDG3xG ²	65	35	25	10	_			
400	PDF3xG @3	65	35	25	10	_			
400	LHH	100	65	35	42	_			
400	PDG3xM*②	100	65	35	22	_			
400	PDF3xM @3	100	65	35	22	_			
400	PDG3xP* ②	200	100	65	22	_			
400	LCL ②	200	200		_	_			
400	LA-P	200	200	200	2	_			
400 ①	HKDDC	_	_	_	42	65			
600	PDG3xG* @	65	35	18	22				
						-			
600	PDG3xM*@	100	65	35	22	_			
600	PDG3xM*@	200	100	50	42	-			
600	CLD @3	65	35	25	22	_			
800	PDG4xG ②	65	50	25	22	_			
800	PDF4xG @3	65	50	25	22	_			
800	PDG4xM ②	100	65	35	25	_			
800	PDF4xM @3	100	65	35	25	_			
800	NB-P	200	200	200	(5)	_			
800 ①	HMDLDC	_	_	_	42	35			
800	NGS	85	50	25	_				
800	CNGS	85	50	25	_	_			
800	PDG5xM	100	65	35	_	_			
800	CNGH	100	65	35	_	_			
800	PDG5xP	200	100	65	_	_			
800	CNGC	200	100	65	-	_			
1200	NGS	85	50	25	T-	_			
1200	CNGS	85	50	25	_	_			
1200	PDG5xM	100	65	35	l _	I _			
1200	CNGH	100	65	35	l _	l _			
1200	PDG5xP	200	100	65	_	<u>_</u>			
1200	CNGC	200	100	65	_	1_			
1200	CNGC	200	100	65					

- ① For use on DC systems only.
- ② Available with integral ground fault protection.
- 3 100% rated circuit breaker.
- 4 Available in drawout configuration for PRL4DX.
- ⑤ 100,000 AIC based on NEMA test procedure.

Main Fusible Switches

The short-circuit rating shown is that of the main switch only. The short-circuit rating of the assembled panelboards is the rating of the lowest fully rated main or branch device or the rating of an approved series rated combination. (Fuses are not included.)

400 and 600 A switches with shunt trip will be rated 100 kA.

Note: Circuit breaker panelboards are designated PRL4X. Fusible switch panelboards are designated PRL4F.

Table 22.3-7. Main Fusible Switches

Switch Rating		Interrupting Rating (kA Symmetrical)						
Amperes		240 Vac	600 Vac	250 Vdc				
Switches Rated 240 Vac. 250 Vdc								

200	R,T	200	_	10
400	R,T	200	_	10
600	R,T	200	_	l –
800	L	200	_	_
1200	L	200	_	_

Switches Rated 600 Vac

200	R, J,T	200	200	_
400	R, J,T	200	200	_
600	R, J,T	200	200	_
800	L	200	200	_
1200	L	200	200	—

Table 22.3-8. Branch Circuit Breakers

Breaker	Ampere	Number	Number Interrupting Rating (kA Symmetrical)							
Туре	Rating	of Poles	120 Vac	120/240 Vac	240 Vac	480 Vac	600 Vac	125 Vdc	250 Vdc	600 Vdc
BAB BAB BAB	15–70 15–100 15–100	1 2 2,3	10 - -	_ 10 _	_ _ _ 10		_ _ _	_ _ _	_ _ _	_ _ _
QBGF, QBGFEP	15–50 ①	1, 2	10	10	<u> </u>					
QBHW QBHW QBHW QBHGF, QBHGFEP	15–70 15–100 15–100 15–30	1 2 2, 3 1, 2	22 - - 22	- 22 - 22	_ _ _ 22 _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _
GHB @3 GHB 3	15–100 15–100	1 2, 3	_		65 65	14 14	_	14 —	_ 14	
GHQ @3	15–30	1, 2	_	_	65	14	_	_	_	_
HGHB @3	15–30	1	_	_	65	25			_	_
GHBGFEP	15–60	1	_	_	65	_	_	_	_	_
PDG2xF PDG2xF	15–100 15–100	1 2,3			14 18	14 14	_	10	_ 10	
PDG2xG ② PDG2xG, PDG3xG ④	15–100 15–225	1 2, 3	_		65 65	35 35	_ 18	10	_ 10	_
PDG2xM ② PDG2xM HFDDC⑤	15–100 15–225 15–150	1 2, 3 2,3		_ _ _	65 100 —	65 65 —	_ 25 _	10 - 42	_ 22 42	_ _ _ 35
PDG2xP	15–225	2,3	_	_	200	100	35		22	_
FB-P	15–100	2,3	_	-	200	200	200	_	6	_
PDD2xF PDD2xG PDD2xM PDD2xM	100–225 100–225 100–225 100–225	2, 3 2, 3 2, 3 2, 3	_ _ _ _	_ _ _ _	22 65 100 200	_ _ _ _	_ _ _ _	10 10 10 10	_ _ _ _	_ _ _ _
HJDDC ® LCL	70–250 125–250	2, 3 2, 3	_		_ 200	_ 200	=	42 —	42 _	35 _
NHH PDD3xGy PDG3xG PDF3xG ⑦ PDG3xM* LHH ⑥ PDF3xM ⑦ PDG3xP*	150-350 250-400 100-400 100-400 100-400 125-400 100-400	3 2,3 2,3 3 2,3 2,3 2,3 2,3		100 	 65 65 100 100 100 100 200	65 35 65 65 65 65 100	35 25 35 35 35 35 35 65	- - - - - -	 10 10 22 22 22 42 22 22 22	- - - - - - -
HKDDC ® LCL LA-P	100–400 200–400 125–400	2,3 2,3 2,3		_ _ _	_ 200 200	_ 200 200	_ _ _ 200	42 _ _	42 	35 - -
PDG3xG* PDG3xM* PDG3xM*	250–600 250–600 250–600	3 3 2,3	_ _ _	_ _ _	65 100 200	35 65 100	18 35 50	_ _ _	22 22 42	_ _ _
CLD ®	300–600	3	_	_	65	35	25	_	22	_

Single-pole breaker rated 277 Vac.At 480 V, use on 480Y/277 Vac system only.

⁴ Three-pole only.

⑤ For use on DC systems only.

 ^{100,000} AIC based on NEMA test procedure.

② 100% rated breaker. Requires copper bus. K- and N-Frame breakers require density rated copper bus. Not available inType 12, 4 and 4X enclosures.

Panelboards

Table 22.3-8. Branch Circuit Breakers (Continued)

Breaker	Ampere	Number	Interruptin	Interrupting Rating (kA Symmetrical)							
Туре	Rating	of Poles	120 Vac	120/240 Vac	240 Vac	480 Vac	600 Vac	125 Vdc	250 Vdc	600Vdc	
PDG4xG	300–800	2,3	-	_	65	50	25	_	22	_	
PDF4xG ①	300–800	3	_	_	65	50	25	-	22	_	
PDG4xM	300–800	2,3	_	_	100	65	35	-	25	_	
PDF4xM	300–800	3	_	_	100	65	35	-	25	l —	
HMDLDC ②	300–800	2,3	-	-	-	-	_	42	42	35	
NGS	320-800	2,3	_	_	85	50	25	_	_	_	
CNGS ②	320-800	2,3	_	_	85	50	25	l –	l –	l —	
PDG5xM	320-800	2,3	_	_	100	65	35	l –	_	_	
CNGH ②	320-800	2,3	_	_	100	65	35	_	_	_	
PDG5xP	320-800	2,3	_	_	200	100	65	_	l –	_	
CNGC ②	320-800	2,3	-	-	200	100	65	_	_	_	
NB-P	400-800	2,3	_	_	200	200	200	_	_	_	
NBDC ②	700–1200	2,3	-	-	-	-	_	42	42	50	
NGS	500-1200	2,3	_	_	85	50	25	_	I -	_	
CNGS ②	500-1200	2,3	_	_	85	50	25	_	_	_	
PDG5xM	500-1200	2,3	_	_	100	65	35	_	l –	_	
CNGH ②	500-1200	2,3	_	_	100	65	35	_	_	_	
PDG5xP	500-1200	2,3	_	_	200	100	65	_	_	_	
CNGC ②	500-1200	2,3	-	-	200	100	65	_	_	_	

① 100,000 AIC based on NEMA test procedure.

Table 22.3-9. Branch Fusible Switches (Fuses are not included)

Table 22.5-9. Dranch Fusible Switches (Fuses are not included)								
Switch	Mounting	Fuse	Interrupt	Interrupting Rating (kA Symmetrical)				
Rating Amperes		Class	240 V	600 V	250Vdc			
Switches Ra	ted 240 Vac, 25	50 Vdc						
30/30	Twin	R	200	_	10			
60/60	Twin	R	200	-	10			
100/100	Twin	R	200	-	10			
200/200	Twin	R,T	200	l –	10			
100	Single	R	200	-	10			
200	Single	R,T	200	-	10			
400	Single	R,T	200	l –	10			
600	Single	R,T	200	-	-			
800	Single	L	200	-	-			
1200	Single	L	200	_	_			
Switches Ra	ted 600 Vac							
30/30	Twin	R, J	200	200	_			
60/60	Twin	R, J	200	200	-			
100/100	Twin	R, J	200	200	l —			

1	30/30	Iwin	K, J	200	200	_
	60/60	Twin	R, J	200	200	_
	100/100	Twin	R, J	200	200	_
	200/200	Twin	J,T	200	200	_
	100	Single	R, J	200	200	_
	200	Single	R, J,T	200	200	_
	400	Single	R, J,T	200	200	_
	600	Single	R, J,T	200	200	_
	800	Single	L	200	200	_
Ľ	1200	Single	L	200	200	_

Note: Twin branch switches of different ampere ratings are available, i.e., 30/60, 30/100, 60/100.

Series Rated Combinations

Refer to the series rating tables beginning on Page 22.3-26 for the approved series rated combinations available for the branch circuit breakers listed in Table 22.3-8.

Modifications

Enclosures

Types 12, 3R, 4/4X.

Ground Bar

Standard bolted in box with (3) #6-300 kcmil terminals. Aluminum is standard, copper is available as an option.

Trims

Trim with door is available as an option for Type 1 enclosures.

Surge Protective Device (SPD)

Integrated onto panelboard chassis. For complete product description and available ratings, refer to Surge Protection (SPD)& Power Conditioning Products Design Guides.

② For use on DC systems only.

Main Lug (MLO), Main Breaker, Neutral, Through-Feed (TFL) and Sub-Feed Lug (SFL) "X" Space Requirements

(For compression lugs, or other configurations not shown, refer to Eaton.)

• = Blank means no bus under cover to meet NEC cable bending space.

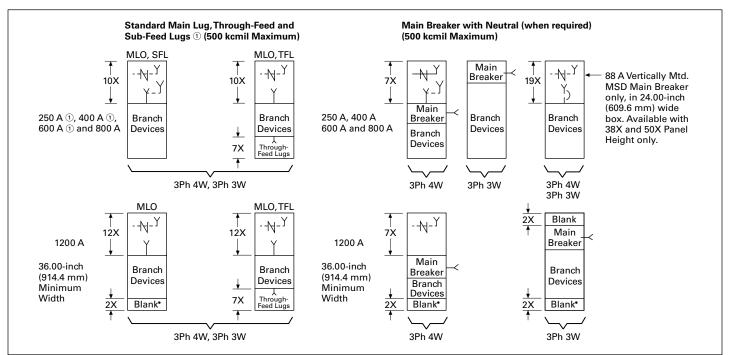


Figure 22.3-4. "X" Space Requirements—Dimensions in Inches (mm)

 $\, \, \oplus \,$ Sub-feed lugs are available 250–600 A. For 600 A, use 1200 A "X" space.

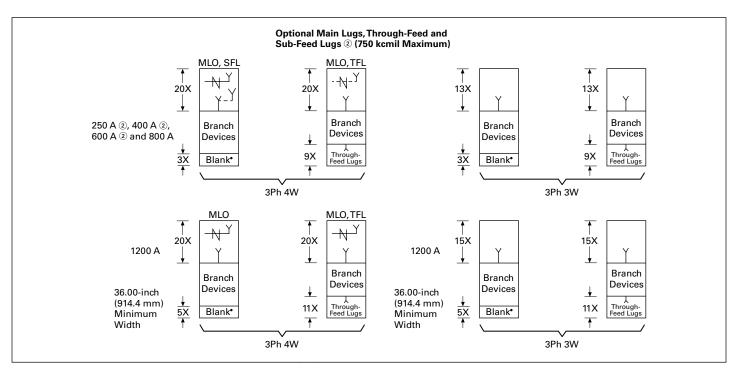


Figure 22.3-5. "X" Space Requirements—Dimensions in Inches (mm)

Breaker (PRL4X) Type Distribution Panelboards 600 Vac, 250 Vdc

Panelboard Layout and Dimensions

To determine the dimensions of a given panelboard enclosure, make a layout sketch by fitting together the main branch and lug modules according to the appropriate tables in the layout guide. Assign "X" units to each module as shown and obtain a total "X" number.

The height of the enclosure is related to the total "X" units in the layout as shown in **Table 22.3-8**. Three standard box heights are available to accommodate any and all layout arrangements. "X" unit totals that do not exactly match those in **Table 22.3-9** must be rounded off to the next higher standard (26X, 38X, 50X).

When a calculated "X" total for a panel exceeds 50X, the panel must be split into two or more separate sections with "X" space for through-feed lugs figured in for all but one section. If a neutral is required, a separate neutral bar and appropriate "X" space must be included in each section.

Layout Example

- PRL4X panelboard, 480Y/277 V, three-phase, four-wire, 65 kA, 800 A, main lug, consisting of:
 - 12 20 A/single-pole HFD
 - 2 250 A/three-pole HJD
 - 1 400 A/three-pole HKD

20 A/1P	20 A/1P	1X
20 A/1P	20 A/1P	1X
20 A/1P	20 A/1P	1X
20 A/1P	20 A/1P	1X
20 A/1P	20 A/1P	1X
20 A/1P	20 A/1P	1X
250 A/3P		3X
250 A/3P		3X
400 A/3P		4X
Main Lugs	800 A	10X
Neutr	Λ	26X
IOIAL		20/

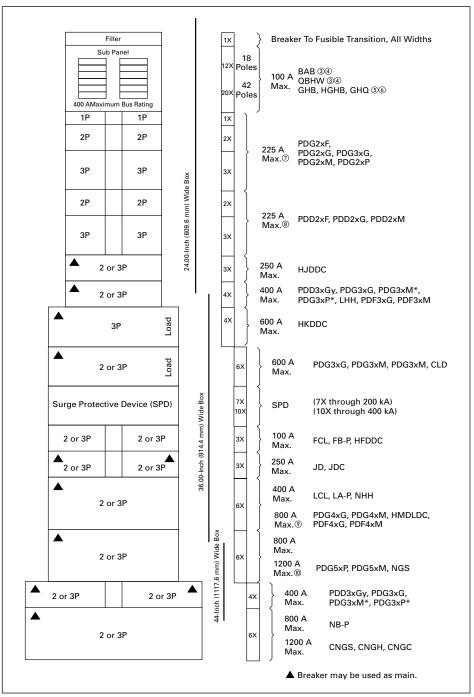
- From layout guide, total "X" height of panel = 26X, (which is a design standard and no rounding off is necessary).
- 2. From Table 22.4-5, enclosure height for 26X panel = 57.00 inches (1447.8 mm).
- 3. Width = 24.00 inches (609.6 mm) directly from layout guide.
- Total enclosure depth = 11.30 inches (287.0 mm) – standard for all PRL4 panelboards.

Note: For SPD unit, add 7X up to 200 kA and 10X for SPD above 200 kA.

Table 22.3-10. Standard Panelboard and Rox—Dimensions in Inches (mm)

DUX-DI	111611910119 111 1	1101169 (111111)	
Panel	Box	Box	Box ①
Height	Height	Width	Depth
26X	57.00	24.00	10.40
	(1447.8)	(609.6) ②	(264.2)
38X	73.50	24.00	10.40
	(1866.9)	(609.6) ②	(264.2)
50X	90.00	24.00	110.40
	(2286.0)	(609.6) ②	(264.2)
38X	73.50	36.00	10.40
	(1866.9)	(914.4)	(264.2)
50X	90.00	36.00	10.40
	(2286.0)	(914.4)	(264.2)
38X	73.50	44.00	10.40
	(1866.9)	(1117.6)	(264.2)
50X	90.00	44.00	10.40
	(2286.0)	(1117.6)	(264.2)

- Box depth is 10.40 inches (264.2 mm), cover adds 0.90 inches (22.9 mm) for overall enclosure depth of 11.30 inches (287.0 mm).
- ② 800 A maximum bus size in 24.00 inches (609.6 mm) wide box.


Note: Flush trims available on PRL4X panels with Door-in-Door enclosure only.

Top and Bottom Gutters (Minimum)

■ 10.62 inches (269.9 mm)

Side Gutters (Minimum)

- 24.00-inch (609.6 mm) wide box: 5.00 inches (127.0 mm)
- 36.00-inch (914.4 mm) wide box: 6.00 inches (152.4 mm)
- 44.00-inch (1117.6 mm) wide box: 8.00 inches (203.2 mm)

Figure 22.3-6. Layout for Branch and Horizontally Mounted Main Devices

- ® BAB and QBHW breakers with shunt trips require one additional pole space, i.e., single-pole is two-pole size, two-pole is three-pole size, and three-pole is four-pole size.
- If panel contains only BAB or QBHW branch breakers, use a PRL1X panelboard.
- ⑤ GHB, HGHB or GHQ breakers cannot be mixed on same subchassis as BAB, QBHW.
- ® If panel contains only GHB, HGHB or GHQ branch breakers, use a PRL2X panelboard.
- When only one single-pole breaker of the group is required on either side of chassis, the single-pole breaker space required changes from 1X to 2X.
- ® Minimum 36.00-inch (914.4 mm) wide box is required if optional #6–300 kcmil lug is required.
- 9 MDL main breaker in 24.00-inch (609.6 mm) wide box, refer to Figure 22.3-4.
- Optional 750 kcmil terminal requires 44.00-inch (1117.6 mm) wide box.

Note: See Page 22.3-20 for MLO or Neutral and Vertically Mounted Mains space requirements.

PRL4DX Layout Guide

Technical Data

Instructions

Determine box size by locating all main and feeder devices in your panel. The width of box is determined by the maximum box size shown for each device. For main lugs, through-feed lugs and sub-feed lugs.

Table 22.3-11. Standard Panel and Box — Dimensions in Inches (mm)

Panel Height	Box Height	Box Width	Box Page 22.3- 23 Depth
38X	73.50	36.00	11.31
	(1866.9)	(914.4)	(287.0)
50X	90.00	36.00	11.31
	(2286.0)	(914.4)	(287.0)
38X	73.50	44.00	11.31
	(1866.9)	(1117.6)	(287.0)
50X	90.00	44.00	11.31
	(2286.0)	(1117.6)	(287.0)

Box depth is 10.40 inches (264.2 mm); cover adds 0.90 inches (22.9 mm), for overall enclosure depth of 11.30 inches (287.0 mm).

Note: Flush trims not available on PRL4DX panels. Door-to-door option not available on PRL4D panels.

Top and Bottom Gutters (minimum)

■ 10.63 inches (269.9 mm)

Side Gutters (minimum)

- 36.00-inch (914.4) wide box:
 - □ 6.00 inches (152.4 mm)
- 44.00-inch (1117.6 mm) wide box:
 - □ 8.00 inches (203.2 mm)

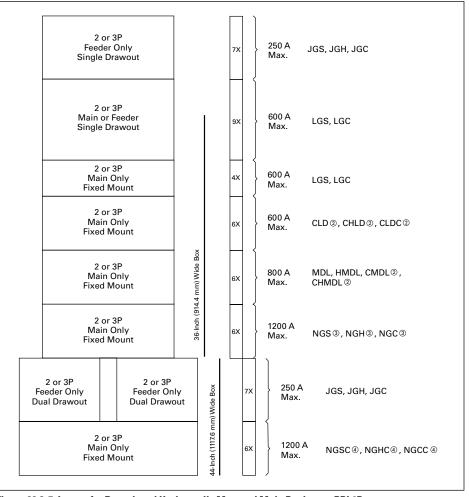


Figure 22.3-7. Layout for Branch and Horizontally Mounted Main Devices—PRL4D

- ② 100% rated breaker.
- ③ Optional 750 kcmil terminal requires 44.00-inch (1117.6 mm) wide box.
- Ontact Eaton for availability.

Series Rated Combinations

UL permits panelboards to be labeled with a short-circuit rating of up to 200,000 A symmetrical where UL listed combinations of main and branch circuits are used.

These combinations consist of main breakers or fusible devices connected ahead of, and in series with approved conventional devices.

Two arrangements are acceptable and comply with UL standards for panel-boards. The main circuit breaker may be installed in the panel as a main device (Figure 22.3-8), or it may be mounted remote (Figure 22.3-9) from the panel. In either case, the approved main and branch combinations must be followed. These arrangements are acceptable and are UL listed having been tested in accordance with UL standards.

From the tables on Page 22.3-26 through Page 22.3-34, specific combinations of main devices (upstream) and branch devices (downstream), series connected and electrically adjacent in the system, may be selected to qualify the assembled panelboard for the short-circuit ratings shown. Series ratings apply only to those Eaton breakers listed and published.

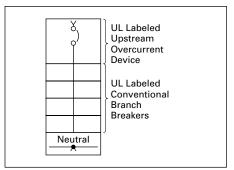


Figure 22.3-8. Main Device

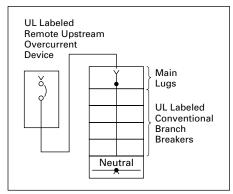


Figure 22.3-9. Mounted Remote

Industry standards and the NEC require protection of the entire electrical distribution system from damage due to short-circuit faults. Article 230.205 of the NEC states that service entrance equipment shall be suitable for the short-circuit current available at its supply terminals. The entire distribution system is required to meet this standard. Series rated systems have become an effective method of meeting these requirements.

There are three protection systems used to protect low voltage power distribution equipment. They are:

- Fully rated protection
- Fully rated, selectively coordinated protection
- Series rated protection

Fully Rated Protection—Where all overcurrent devices are rated for the full prospective short-circuit current at their line side terminals throughout the system.

Selectively Coordinated Protection— A fully rated system where the overcurrent device closest to the fault will open first, thus isolating the faulty circuit.

Series Rated Protection—A short-circuit interrupting rating assigned to a combination of two or more over-current protective devices that are connected in series and in which the rating of the downstream device(s) in the combination is less than the series rating.

Series ratings are also known in the industry as integrated ratings, series combination ratings and series connected ratings.

UL Issues

In a series rated system, all of the overcurrent devices in series in the protective scheme must have been tested and listed by Underwriters Laboratories for series combination use in the system.

All Eaton's series ratings are in full compliance with all applicable requirements of the latest editions of UL 489, 891 and 67.

The UL Recognized Component Directory (the Yellow Book) contains breaker manufacturers' series connected listings. These are intended ONLY as a guideline for use by others who are responsible for their own testing, labeling and listing. Therefore, the UL Recognized Component Directory cannot be used to interpret series connected ratings in assembled equipment. The assembled equipment must also be UL tested for series ratings.

Code Issues

The fault current contribution of motors connected between series rated breakers must be considered. Article 240.86 in the NEC states that for series ratings, the sum of the motor full-load currents cannot exceed 1% of the interrupting rating of the lower rated circuit breaker. The actual fault current contribution from induction motors is about four times their full-load current (impedance value of 25%). For example, if the downstream branch circuit breakers used in a series rated combination have an interrupting rating of 14,000 A rms symmetrical for a 480 V system, the maximum allowable motor contribution to that panel from the branch circuit breakers is 140 A (1%). For typical induction motors, this is equivalent to a total horsepower at 480 V of approximately 115 horsepower.

Requirements of the NEC (NFPA-70) for series ratings may be met by equipment marked with ratings adequate for the available fault current at the point of application in the electrical system. Eaton panelboards and switchboards are marked consistent with NEC Article 240.83.

Additionally, Article 110.22 requires field marking on equipment where series ratings are used. This label is supplied standard with all Eaton panelboards and switchboards.

NEC Required Caution Label

Note: The NEC requires the installer to properly apply and complete this label. Label(s) must be placed on all equipment where series ratings are used.

Fuse Application Considerations

Fuses can be used instead of circuit breakers in fully rated, selectively coordinated and series connected protection systems. See the tables on Page 22.3-31 through Page 22.3-34 for fuse breaker data applied to series connected designs.

Don't apply fuses using the up-over-down method, which has been recommended by some fuse manufacturers for sizing a current-limiting fuse that protects a downstream molded case circuit breaker with a specified rms symmetrical interrupting rating. The method can lead to erroneous and unsafe conclusions, and should not be used.

Example: Assume a specific type of current-limiting fuse rated 2000 A. Then using the figure below:

- Draw a vertical line from the prospective short-circuit current of 200 kA to intersect the typical peak let-through curve at "A."
- Draw a horizontal line left from Point "A" to intersect the "prospective peak" curve at "B."
- Drop a vertical line from "B" to intersect the horizontal axis and read the recommended rating, 65 kA rms, concluding that a circuit breaker with a 65 kA interrupting capacity will be protected by a specified 2000 A current-limiting fuse.

This conclusion is wrong when the downstream service has a blow-open contact assembly, as does a molded case circuit breaker or similar device.

The reason:The up-over-down method ignores dynamic impedance (the inherent current-limiting of the downstream molded case circuit breaker). Such impedance is developed directly by the forces of the let-through current created when the contacts are blown open.

For proper application of current-limiting fuses, always refer to recommendations by the manufacturer of the circuit breaker, which are based on actual test data.

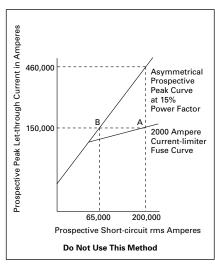


Figure 22.3-10. Old Up-Over-Down Chart

Applying Series Ratings

The following is provided to use the series rating tables on the following pages.

- Step 1. Determine the available system voltage and fault current.
- Step 2. Select the appropriate table using the system voltage.
- Step 3. Use the appropriate "Series Equipment Rating" column equal to, or greater than, the available fault current, to determine the allowable combinations of main (upstream) and branch (downstream) overcurrent devices. Main devices are shown in bold/ shaded areas. Respective branch breakers are shown directly below their associated main device. If a rating is not initially found in a column, first look to the columns to the right for higher "Series Equipment Ratings" within the same table. If still not found, use ratings from table of a higher system voltage (higher numbered tables).

Example 1:

240 V, three-phase, three-wire, AC system with available fault current of 37,438 A. Main (upstream) device is a three-pole, 150 A, PDG2xG breaker. The branch (downstream) breakers are two- and three-pole, 20, 30 and 60 A, 240 V, BAB breakers.

- 1. Go to the 240 V table (Table 22.3-13).
- 2. Look down under the 42 kA column. This rating is not shown.
- 3. Look to the columns to the right. This rating is shown under the 65 kA column, and therefore is valid.

Example 2:

480Y/277 V, three-phase, four-wire, AC system with available fault current of 62,097 A. Main (upstream) device is a three-pole, 250 A breaker. The branch (downstream) breakers are two- and three-pole, 60, 70 and 100 A FDB breakers.

- Go to the 480Y/277 V table (Table 22.3-16).
- 2. Look down under the 65 kA column. This rating is not shown.
- 3. Look to the columns to the right. This rating is still not shown.
- Look at the table with the next higher system voltage (480 V, Table 22.3-17).
- 5. This rating is shown under the 65 kA column, and therefore is valid.

Example 3:

208Y/120 V, three-phase, four-wire, AC system with available fault current of 56,438 A. Main (upstream) device is a three-pole, 225 A, PDD2xG breaker. The branch (downstream) breakers are single-pole, 20 A BAB (120/240 V), and two- and three-pole, 70 A BAB (240 V).

- Go to the 240 V table (Table 22.3-13).
- Look under the 65 kA column. This rating is shown under the 65 kA column, and therefore is valid for the two- and three-pole (240 V) breakers.
- Look at the 120/240 V table (Table 22.3-12) for the single-pole (120/240 V) rating.
- 4. Look under the 65 kA column. This rating is shown under the 65 kA column, and therefore is valid for the single-pole (120/240 V) breakers.

Other Applications of Series Ratings

Series ratings can also be applied under the following guidelines:

Any FULLY RATED breaker can be applied upstream, downstream, or in the middle of, any of the series ratings stated in the tables.

Any series rating stated in the tables may have additional branch breakers of the EXACT SAMETYPE further downstream in that rating.

COMBINING SERIES RATINGS is allowed under certain conditions. Main and branch series ratings may be combined if:

Breakers A, B and C are in series respectively from main to branch. Breakers A and B series rate together, breakers A and C series rate at the same interrupting rating level (or higher), it is allowable to use A, B and C together at the A-B series rating.

It is improper to combine series ratings under the following condition:

Breakers A, B and C are in series respectively from main to branch. Breakers A and B series rate together, breakers B and C series rate at the same interrupting rating level (or higher), it is **NOT** allowable to use A, B and C together at the A-B or B-C series rating. However, combining multiple overcurrent devices as in this example, can be accomplished if all devices in the series combination have been tested together and listed in triple rating **Table 22.3-25**.

Main devices shown centered at top in shaded area, respective branch devices shown directly below.

Table 22.3-12. 120/240 Vac—Breaker/Breaker Series Ratings

Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below.

Main	Series Equ	ipment Rating	g—kA Symme	trical					
Breaker Maximum Amperes	18	22	42	65		100		200	
100	PDG2xF	QBHW QPHW		GB, GHB		FB-P		FCL	
	BAB HQP QBGF QBGFT QBCAF	BAB HQP QBGF QPGF QBAG QBGFT QPGFT		BAB HOP OBGF OPGF OBAG OBHW OPHW OPHW OPHW OBGFT OPGFT		BAB HOP OBGF OPGF OBAG OBHW OPHW PDG2xF PDG2xG OBGFT OPGFT		BA HQP QBGF QPGF QBAG QBHW QPHW GB, GHB GHQ PDG2xF PDG2xF PDG2xM QBGFT QPGFT QBCAF	
125				BRX		EGH			
				BAB (15-70 A) BAB (90-100 A) HQP (15-70 A) HQP (90-100 A)		GHQ, GHB			
150				PDG3xG*					
	BAB HQP QBGF QBAG QBGFT QBCAF			BAB HQP QBHW QPHW		BAB HQP GHB PDG2xF PDG2xG (15–150 A) QBHW QPHW			
200						LA-P			
						BAB HQP QBHW QPHW PDG2xF PDG2xG			

Table 22.3-12. 120/240 Vac—Breaker/Breaker Series Ratings (Continued)

Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below.

Main	Series	eries Equipment Rating — kA Symmetrical									
Breaker Maximum Amperes	18	22	42	65			100			200	
225		PDD2xF BAB HQP QBGF QPGF QBHGF QPHGF QBHW QPHW QBAG QBGFT QPHGFT QPHGFT	BAB HOP OBGF OPGF OPHGF OPHGF OPHW OPHW OBAG OBGFT OPGFT OPGFT OPGFT OPGFT OPGFT OPGFT	PDD2xG, PDG2xG BAB HQP QBGF QPGF QBAG QBHW QBHGF QBGFT QPGFT QBHGFT QBHGFT QBCAF	GBGF QPGF QBAG QBHGF QBGFT QPGFT QBGFT QBCAF QPHGF QPHGFT	BAB HQP QBHW QPHW	PDD2xM BAB ① HOP ① OBGF OPGF OBAG OBGFT OPGFT OBCAF	BAB HOP OBGF OBAG OBHW OPHW OBHGF GB, GHB GHQ, GHORSP PDG2XF, EGS PGD2XG OBGFT OPGFT OBCAF	BAB HOP OBHW OPHW BAB HOP OBGF OBAG OBHW OPHW OPHW OPHW OBHGF GHB, PDG2xF PDG2xG (15–150 A) OBGFT EGS PDG3xG* (15–150 A) OBCAF OBHGFT OPGF OPGFT OPHGF		PDG2xP GB, GHE GHQ PDG2xF PDG2xM EGS EGH
250				JD BAB (15–70 A) HQP (15–70 A) QBHW QPHW PDG2xF	BAB HQP QBHW QPHW	QBGF QPGF QBAG QBGFT QPGFT QBCAF	GB, GHB PDG2xF PDG2xG EGS	BAB HQP QBHW QPHW	QPHGFT	GB, GHB PDG2xF PDG2xG PDG2xM EGS EGH	
400		PDD3xGy BAB HQP QBGF QPGF QBGF QBGFT QPGFT	PDG3xG* PDF3xG BAB (15–70 A) HQP (15–70 A) QBHW QPHW	PDG3xM* PDF3xM BAB (15–70 A) HQP (15–70 A) QBHW QPHW	PDD3xGy PDF3xG PDG2xF	KDPDG3xP BAB (15–70 A) HQP (15–70 A)	PDG3xM* PDF3xM GB, GHB PDG2xF PDG2xG EGS ②	PDG3xP* QBHW QPHW		PDG3xP GB, GHB PDG2xF PDG2xG PDG2xM EGS EGH	LCL BAB HQP QBGF QPGF QBAF QBAG QBHW QPHW GB, GHB PDG2xF PDG2xG PDG2xM QBGFT QPGFT QBCAF
600							PDG2xF				abo/ii
800							PDG4xM PDG2xF				
1200			ed to 15–70 A				PDG5xM PDG5xM-C PDG2xF PDD2xF PDD2xG				

① Single-pole version is restricted to 15-70 A.

② Not valid with PDF3xM.

Pow-R-Line 4X Panelboards

Series Rated Combinations

Table 22.3-13. 240 Vac—Breaker/Breaker—Series Ratings
For single- and two-pole 120/240V rated breakers (BA, BAB, HQP, QBHW, QPHW), see Table 22.3-12.
Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below.

Main	Series Equip	ment Rating – k/	A Symmetric	al					
Breaker Maximum Amperes	18	22	42	65		100			200
100	PDG2xF	QBHW_H		GB, GHB		FB-P			FCL
	BAB_H HQP_H	QPHW_H BAB_H HQP_H		BAB_H HQP_H QBHW_H QPHW_H		BAB_H HQP_H PDG2xF PDG2xG			BAB_H HQP_H QBHW_H QPHW_H GB, GHB PDG2xF PDG2xG PDG3xG* PDG2xM*
125						EGH GHB			
150	FDB BAB_H HQP_H								
200						BAB_H HQP_H QBHW_H QPHW_H PDG2xF PDG2xG JDB			
225		PDD2xF		PDD2xG	PDG2xG, PDG3xG*	PDD2xM, EDC	PDG2xM	PDG2xP	PDG2xP
		HQP_H BAB_H QBHW QPHW	HQP_H BAB_H QBHW QPHW CHH BAB_H	BAB_H HQP_H QBHW_H	BAB_H HQP_H QBHW_H QPHW_H PDG2xF ©	BAB_H HQP_H	BAB_H HOP_H OBHW_H OPHW_H GB, GHB PDG2xF PDG2xG PDG3xG*	BAB_H HQP_H QBHW_H QPHW_H	GB, GHB PDG2xF PDG2xG PDG3xG* PDG2xM
250				JDB					
				BAB_H (15–70A) HQP_H (15–70 A) QBHW_H QPHW_H PDG2xF	BAB_H (15–70 A) HQP_H (15–70 A) QBHW_H QPHW_H	GB, GHB PDG2xF PDG2xG PDD2xG JDB EGS	BAB_H HQP_H QBHW_H QPHW_H		GB, GHB PDG2xF PDG2xG PDG3xG* PDG2xM, PDD2xF PDD2xG PDD2xG PDD2xM JDB EGS, EGH

① Valid on two- and three-pole breaker only. Not valid for single-pole.

Table 22.3-14. 240 Vac—Breaker/Breaker—Series RatingsFor single- and two-pole 120/240 V rated breakers (BA, BAB, HQP, QBHW, QPHW), see **Table 22.3-12**. Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below.

Main	Series Equipment Ratin	Series Equipment Rating—kA Symmetrical									
Breaker Maximum Amperes	65	100		200							
400	PDD3xGy, PDG3xG*	PDG3xM*, PDF3xM	PDG3xP*	PDG3xP	LCL						
	PDF3xG BAB_H HQP_H QBHW_H QPHW_H PDG2xF	QBHW_H ① QPHW_H ① GB, GHB PDG2xF PDG3xG*, PDG2xG PDD2xF, PDD2xG JDB PDD3xGy, PDG3xG* EGS ②	QBHW_H QPHW_H	GB, GHB PDG2xF PDG2xG, PDG3xG* PDG2xM, PDD2xF PDD2xG, PDD2xM JDB PDG3xG* PDD3xGy PDG3xM*	BAB_H HQP_H QBHW_H QPHW_H GB, GHB PDG2xF PDG2xG, PDG2xM PDD2xF, PDD2xG PDG3xG* PDD3xG, DB PDD3xGy, PDG3xG* PDG3xM, DB PDD3xM, PDG3xG* PDG3xM						
500		NB-P									
		JDB PDG3xG*, PDD3xGy PDF3xG									
600		HLDB									
		GB ①, GHB ① PDG2xG, PDD2xF PDD2xG, PDG2xF JDB PDG3xG*, PDD3xGy, PDF3xG, LDB		PDD2xF, PDD2xG PDD2xM							
800		NB-P	PDG4xM								
		PDG3xG*, PDD3xGy	PDG2xF PDG2xG								
1200		PDG5xM			PDG5xP						
		PDD2xF, PDD2xG PDG2xF			PDD2xF, PDD2xG PDD2xM						
2500											
		PDD2xF, PDD2xG			PDD2xF, PDD2xG PDD2xM						

 $^{\, \}mathbb{O} \,$ Valid on two- and three-pole breakers only. Not valid for single-pole.

② Not valid with PDF3xM.

Panelboards

Main devices shown in shaded area, respective branch devices shown directly below.

Table 22.3-15. 277 Vac—Breaker/Breaker Series Ratings

Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below. All ratings in this table apply to single-pole branch breakers only. For two- and three-pole branch breakers, see other tables.

Main	Series Equipme	ent Rating – kA Symm	netrical	,		,	
Breaker Maximum Amperes	22	25	35	65	100		150
100							FCL
							GHB GHQ, GHQRSP PDG2xF PDG2xG PDG2xM
125			EGS	EGH			
			GHQ, GHB	GHQ, GHB			
225			PDG2xG, PDG3xG*	PDG2xM	PDG2xP		
			GHB GHO GHORSP © GHBGFEP ©	GHB GHQRSP ② GHBGFEP ② GHQ PDG2xF PDG2xG	GHB PDG2xF PDG2xG PDG2xM		
250	JD, JDB		JD, JDB	HJD	LCL	JDC	
	GHB		GHB (15–50 A) GHBGFEP ®	GHB (15–50 A) PDG2xF PDG2xG GHBGFEP	PDG2xP	GHB PDG2xF PDG2xG PDG2xM	
400	PDG3xG*	PDG3xM*	PDG3xG*	PDG3xM*, PDF3xM	PDG3xP*		LCL
	PDF3xG	PDF3xM	PDF3xG	GHB	GHB		GHB
	GHB	GHB	GHB PDG2xF PDG2xG GHQ@	PDG2xF PDG2xG GHQ®	PDG2xF PDG2xG PDG2xM		PDG2xF PDG2xG PDG2xM

- ① Not valid with PDG3xG*.
- ② Not valid with HFDE.
- 3 Not valid with JDB.
- Not valid with PDF3xG.
- S Not valid with PDF3xM.

Table 22.3-16. 480Y/277 Vac—Breaker/Breaker Series Ratings

Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only. For single-pole branch breakers, see **Table 22.3-15**.

Main	Series Equipment Rati	ng – kA Symmetrical				
Breaker Maximum Amperes	22	25	35	65	100	150
100						FCL
						GHB, GHQRSP
125			EGS	EGH		
			GHB	GHB		
225			PDG2xG, PDG3xG*	PDG2xM	PDG2xP	
			GHB, GHQRSP ®	GHB, GHQRSP ⑦	GHB	
250	JDB		JDB			
	GHB		GHB (15-50 A)	GHB (15-50 A)	GHB	
400	PDG3xG*	PDG3xM*, PDF3xM	PDG3xG*	PDG3xM*, PDF3xM	PDG3xP*	LCL
	PDF3xG	GHB	PDF3xG	GHB (15-50 A)	GHB (15-50 A)	GHB
	GHB		GHB (15-50 A)			

- Not valid with PDG3xG*.
- Not valid with HFDE.

Pow-R-Line 4X Panelboards

Main devices shown in shaded area, respective branch devices shown directly below.

Table 22.3-17. 480 Vac—Breaker/Breaker Series Ratings
Main devices are shown centered at top, in shaded area. Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only. Not valid for single-pole branch breakers.

Main	Series Equipme	nt Rating – kA Symmetrical				
Breaker Maximum Amperes	25	35	65	65 100		150
100				FB-P		FCL
				PDG2xF PDG2xG PDG2xM		PDG2xF PDG2xG, PDG3xG* PDG2xM
200				LA-P		
				PDG2xF PDG2xG PDG2xM JDB		
225		PDG2xG, PDG3xM,	PDG2xM*	PDG2xP		
		PDG2xF	PDG2xF PDG2xG, PDG3xG EGS ①	PDG2xF, EGS, EGH PDG2xG, PDG3xG* PDG2xM		
250	JDB					LCL
	PDG2xF		PDG2xF PDG2xG PDG3xG* JDB EGS	PDG2xF, EGS, EGH PDG2xG, PDG3xG* PDG2xM JDB		PDG3xG*
400		PDG3xG*	PDG3xM*	PDG3xP*	LA-P	LCL
		PDG2xF	PDG2xF PDG2xG, PDG3xG* JDB PDG3xG* EGS	PDG2xF, EGS, EGH PDG2xG, PDG3xG* PDG2xM JDB PDG3xG* PDG3xM*	JDB PDG3xG* PDG3xM*	PDG2xF PDG2xG, PDG3xG* PDG2xM PDG2xP JDB PDG3xG* PDG3xM*
500				NB-P		
				JDB PDG3xG* PDG3xM*		
600		LDB	HLDB			
		CLD	PDG2xG, PDG3xG*			
		JDB	JDB PDG3xG* LDB			

① Not valid with HFDE.

Table 22.3-18. 600 Vac—Breaker/Breaker Series Ratings

Main fuse class shown centered at top, in shaded area. Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only. Not valid for single-pole branch breakers.

Main	Series Equipme	nt Rating – kA Symmetr	ical			
Breaker Maximum Amperes	18	25	35	42	50	100
225	PDG2xG	PDG2xM	PDG2xP			
		PDG2xG	PDG2xG, PDG3xG* PDG2xM			
250	JDB					LCL
		PDG2xG JDB	PDG2xG PDG2xM JDB			PDG3xG*
400		PDG3xG*	PDG3xM*, PDF3xM	PDG3xP*	PDG3xP*	LCL
		PDF3xG	PDG2xG, PDG3xG*	PDG2xG, PDG3xG*	JDB	PDG2xG, PDG3xG*
I		PDG2xG JDB	PDG2xM JDB	PDG2xM	PDG3xG* PDG3xM*	PDG2xM PDG2xP JDB PDG3xG* PDG3xM* PDG3xP*
600		LDB	HLDB			
		CLD	PDG3xG*			
		PDG2xG JDB	LDB			

Table 22.3-19. 120/240 Vac—Fuse/Breaker Series Ratings

Main fuse class shown centered at top, in shaded area. Respective branch devices shown directly below.

Main	Series Equipmer	nt Rating – kA Symmet	rical					
Fuse Maximum Amperes	100	100			200			
100						R BAB		
						HQP QBHW QPHW GB GHB		
200			R	J	T			
			GB GHB	BAB HQP QBHW QPHW	BAB HQP QBHW QPHW			
400	J	Т		J	T			
	BAB HQP QBHW QPHW	BAB HQP QBHW QPHW		GB GHB	GB GHB			

Panelboards

Main devices shown in shaded area, respective branch devices shown directly below.

Table 22.3-20. 240 Vac—Fuse/Breaker Series Ratings

For single- and two-pole 120/240 V rated breakers (BA, BAB, HQP, QBHW, QPHW), see Table 22.3-15. Main fuse class shown centered at top, in shaded area. Respective branch devices shown directly below.

Main	Series Equipment F	Rating – kA Symmetri	cal	·	·		
Fuse Maximum Amperes	100	100		200	200		
100						R BAB_H HQP_H QBHW_H QPHW_H GB GHB	
200			R GB GHB	J BAB_H HQP_H QBHW_H QPHW_H	T BAB_H HQP_H QBHW_H QPHW_H	R GB ① GHB ①	
400	Ј BAB_H HQP_H QBHW_H QPHW_H	T BAB_H HQP_H QBHW_H QPHW_H		J GB GHB	T GB GHB		
600			L PDG2xF PDG2xG, PDG3xG* PDD2xG JDB PDD3xGy, PDG3xG*				

① Valid on two- and three-pole breakers only. See Table 22.3-19 for single-pole.

Table 22.3-21. 277 Vac Fuse/Breaker Series Ratings

Main fuse class are shown centered at top, in shaded area. Respective branch devices shown directly below. All ratings in this table apply to single-pole branch breakers only. For two- and three-pole branch breakers, consult other tables.

Main Fuse Maximum Amperes	Series Equipme	Series Equipment Rating – kA Symmetrical							
	65		100	100			200		
100			J	Т		R			
			GHQ GHQRSP	GHQ GHQRSP		GHB			
200	J	Т	J	Т	R				
	GHQ GHQRSP	GHQ GHQRSP	PDG2xF PDG2xG PDG2xM	PDG2xF PDG2xG PDG2xM	GHB				
400						J	Т		
						GHB	GHB		

Table 22.3-22. 480Y/277 Vac—Fuse/Breaker Series Ratings

Main fuse class shown centered at top, in shaded area. Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only. For single-pole branch breakers, see Table 22.3-21.

Main	Series E	quipme	nt Rating—I	A Symmetric	al		
Fuse Maximum Amperes	65		100		200		
100							R
							GHB
200				R			
				GHB			
400					J	Т	
					GHB	GHB	
600			J	Т			
			PDG2xF PDG2xG PDG2xM PDG2xP	GHB PDG2xF PDG3xG* PDG2xG PDG3xG* PDG2xM PDG2xP			

Table 22.3-23. 480 Vac—Fuse/Breaker Series Ratings

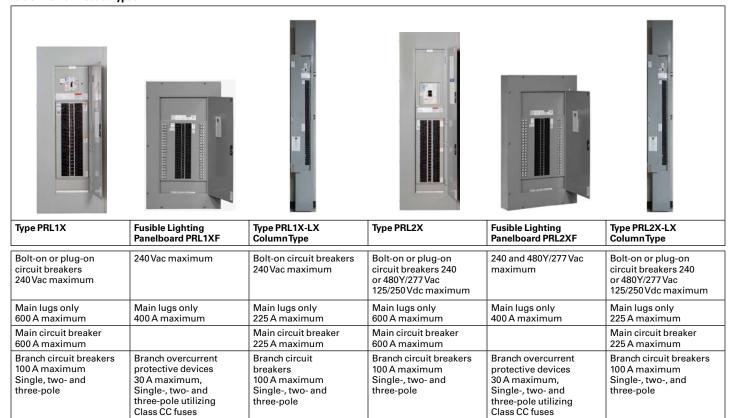
Main fuse class shown centered at top, in shaded area. Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only. Not valid for single-pole branch breakers.

Main	Series Equipment Rating – kA Symmetrical						
Fuse Maximum Amperes	100			200			
100			R				
			PDG2xF				
200	J	Т					
	PDG2xF PDG2xG PDG2xM PDG2xP	PDG2xF PDG2xG PDG2xM PDG2xP					

Table 22.3-24. 600 Vac—Fuse/Breaker Series Ratings

Main fuse class shown centered at top, in shaded area. Respective branch devices shown directly below. All ratings in this table apply to two- and three-pole branch breakers only. Not valid for single-pole branch breakers.

Main	Series Equ	ipment Rat	ing—kA Sym	metrical		
Fuse Maximum Amperes	100					
100			R			
			PDG2xG PDG3xG* PDG2xM PDG2xP			
200	J	T	R			
	PDG2xG PDG3xG* PDG2xM PDG2xP	PDG2xM PDG2xP	PDG3xG* PDG2xM			
400	J	Т	R			
			PDG3xG* PDG3xM* PDG3xP*			
600				J	T	
				PDG3xG PDG3xM PDG3xP	PDG3xG* PDG3xM* PDG3xP*	


Table 22.3-25. Triple Series Ratings

Main Fuse Class and Maximum Amperes	Tenant Main Type	Branch Type	System Voltage	Short- Circuit Series Rating (kA, Sym.)
L-6000	PDD3xGy, PDG3xGBGB	K, GDHB, PDG2xF ①	240	100
L-6000	PDD3xGy, PDG3xGGB	K, GDHBB	120/240	100
L-6000	PDD3xGy PDG3xPG	FD ①, FDB	240	100
L-6000	PDD3xGy PDG3xG*		240	100
L-6000	JDB	GB, GHB	240	100
L-6000	JDB	GB, GHB	120/240	100
L-6000	PDG2xG	GB, GHB	240	100
L-6000	PDG2xG	GB, GHB	120/240	100
L-6000	PDG2xG	BAB_H, HQP_H QBHW_H, QPHW_H	240	100
L-6000	PDG2xG	BA, BAB HQP (15–70 A)	120/240	100
L-6000	PDG2xF	BAB_H, HQP_H	240	100
L-6000	PDG2xF	BA, BAB, HQP	120/240	100

① Valid on two- and three-pole breakers only. Not valid for single-pole.

Panelboard Selection Guide

Table 22.3-26. Product Types

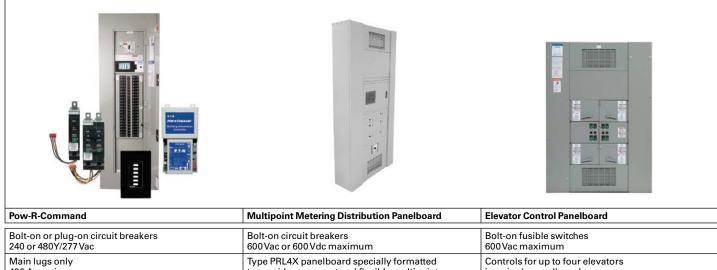

Panelboards

Table 22.3-26. Product Types (Continued)

Retrofit Panelboard PRL-1RX and PRL-2RX	Type PRL3X	Type PRL3E	Type PRL4X / PRL4F
Bolt-on or plug-on circuit breakers 240 or 480Y/277 Vac	Bolt-on circuit breakers 240, 480 or 600 Vac; 250 Vdc maximum	Bolt-on circuit breakers 240 Vac maximum	Circuit breakers or fusible switches; 240, 480 or 600 Vac; 600 Vdc maximum
Main lugs only 225 A maximum	Main lugs only 800 A maximum	Main lugs only 600 A maximum	Main lugs only 1200 A maximum
			Main circuit breaker 1200 A maximum
Main circuit breaker 225 A maximum	Main circuit breaker 600 A maximum	Main circuit breaker 600 A maximum	Main fusible switch 1200 A maximum
			Branch circuit breakers 1200 A maximum, Single-, two- and three-pole
Branch circuit breakers 100 A maximum Single-, two- and three-pole	Branch circuit breakers 225 A maximum Single-, two- and three-pole	Branch circuit breakers 125 A maximum Single-, two- and three-pole	Branch fusible switches 1200 A maximum, Single-, two- and three-pole

Table 22.3-26. Product Types (Continued)

Bolt-on or plug-on circuit breakers 240 or 480Y/277 Vac	Bolt-on circuit breakers 600 Vac or 600 Vdc maximum	Bolt-on fusible switches 600 Vac maximum
Main lugs only 400 A maximum	Type PRL4X panelboard specially formatted to provide a compact and flexible multipoint	Controls for up to four elevators in a single panelboard
Main circuit breaker 400 A maximum	metering solution for 250–1200 A applications	Main lugs only 800 A maximum
Branch circuit breakers 225 A maximum Single-, two- and three-pole		Branch overcurrent devices 15–200 A fusible switches with Class J fuse clips maximum
Single- and two-pole remote operated circuit breakers		
ntegral load switching and dimming controls		Designed to meet specific sections various codes impacting elevators

Pow-R-Line 4X Panelboards

Table 22.3-27. Panelboard Selection Guide

Panelboard Type	Device Type	Maximum Voltage Rating		Maximum Ma Rating, Ampe		Branch Circuits Ampere Range	Short-Circuit Current Ratings rms Symmetrical Amperes, AC	
		AC	DC	Main Lugs Only	Main Device		Fully Rated (kA)	Series Rated (kA)
Pow-R-Line 1X ①	Breaker	240	_	600	600	15–100	10–22	22–200
Pow-R-Line 2X ①	Breaker	240 480Y/277	250	600 400②	600 400 ②	15–100 15–100	65 14	65–200 22–150
Pow-R-Line 3X ①	Breaker	240 480 600	250	800 800 800	600 600 600	15–225 15–225 15–225	10–200 14–100 14–35	22–200 22–150 –
Pow-R-Line 3E ①	Breaker	480	250	600	600	15–125	35–65	35–100
Pow-R-Line 4X ①	Breaker	240 480 600	600	1200 1200 1200	1200 1200 1200	15–1200 15–1200 15–1200	10–200 14–200 14–200	22–200 22–150 –
Pow-R-Line 4F ①	Fusible switch	240 600	250	1200 1200	1200 1200	30–1200 30–1200	100–200 100–200	_
Pow-R-Line 4DX	Breaker	240 480	_	1200 1200	1200 1200	20–600 Drawout 15–1200 Fixed	100 65	
Pow-R-Line 1XF	Fusible switch	240	_	400	400	15–30	200	200
Pow-R-Line 2XF	Fusible switch	480Y/277	_	400	400	15–30	200	200
Pow-R-Line 1X-LX	Breaker	240	_	225	225	15-30	10–22	18–200
Pow-R-Line 2X-LX	Breaker	480Y/277	125/250	225	225	15–30	14	25–150
Pow-R-Line 1RX	Breaker	240	_	225	225	15–100	10–22	22-100
Pow-R-Line 2RX	Breaker	480Y/277	_	225	225	15–100	14	22–150
Elevator control panelboard ①	Fusible	480	_	800	800	15–200	10–200	14–100

① Available with surge protective device (SPD) and metering.

② Amperage rating for DC voltage.

Type PRL4X Modifications

Type PRL4X

Modifications Selection Guide

Table 22.3-28. Modifications—Alphabetical Index

Modification	Available on Panelboard Types
	PRL4X
Ambient compensating breakers	Yes
Bus density	Yes
Cabinets—special:Types 2, 3R, 4, 4X, 12	Yes
Complete assembly	Yes
Compression type lugs, mains only	Yes
Concealed trim clamps (LT trim)	No
Conduit covers	Yes
Copper lugs	Yes
Copper main bus	Yes
Directory frame—metal	Yes
Doors, special	Yes
Electronic trip units	Yes
Fungus-proof	Yes
Ground bar	Yes
Ground fault protection (zero sequence)	Yes
Handle lockoff device	Yes
Hinges, special (LT trim)	Yes
Increased dimensions	No
Increased panel bus rating	No
Interiors to fit existing boxes	Yes
Locks, special (LT trim)	Yes
Metering devices	Yes
Molded case switches	Yes
Nameplates engraved	Yes
Neutral rated 200%	Yes
Painting and special coating	Yes
Permanent circuit numbers	Yes
Remote control switches (ASCO 920)	No
Service entrance	Yes
Shunt trips	Yes
Split bus or meter loop	No
Sub-feed breakers	No
Sub-feed lugs	Yes
Sub-metering	Yes
Surge protective device (SPD)	Yes
Tamperproof screws (LT trim)	Yes
Terminals, copper only for breakers	Yes
Through-feed lugs	Yes
Time clock space only	_
Touchup paint	Yes

Eaton 1000 Eaton Boulevard Cleveland, OH 44122 United States Eaton.com

